Three-dimensional (3D) packages are of considerable interest at the present time as a means for heterogeneous high-performance integration of disparate digital, analog, optical, and MEMS technologies. However, their design is challenged by several issues, including the appropriate choice of thermal solution to be used in the 3D stack. Suboptimal placement of heat sources/sinks leads to hot spots, which are detrimental to package reliability. The broad goals of this study are to determine the appropriate cost and reliability-constrained heat-sinking solutions through an optimal placement of spatially distributed energy transporting elements. The heat-sinking solutions considered in this study include microchannels, and thermal vias. We conduct a microchannel analysis to develop a reduced model of the heat and mass transfer characteristics of the microchannel. We also develop optimization techniques and tools for thermal solution design of three-dimensional packages. We use a nonuniform “real-life” microprocessor power map for the illustration of the procedure. We subsequently obtain the optimal size and location of the thermal vias and microchannels in a 3D stack by minimizing a proposed multi-objective criteria. Finally, we develop and illustrate the notion of design maps that would guide the designers in the selection of appropriate thermal solution technologies for 3D packages.

1.
Banerjee
,
K.
,
Souri
,
S. J.
,
Kapur
,
P.
, and
Saraswat
,
K. C.
, 2001, “
3-D ICs: A Novel Chip Design for Improving Deep-Submicrometer Interconnect Performance and Systems-on-Chip Integration
,”
Proc. IEEE
0018-9219,
89
(
5
), pp.
602
633
.
2.
Topol
,
A. W.
,
La Tulipe
, Jr.,
D. C.
,
Shi
,
L.
,
Frank
,
D. J.
,
Bernstein
,
K.
,
Steen
,
S. E.
,
Kumar
,
A.
,
Singco
,
G. U.
,
Young
,
A. M.
,
Guarini
,
K. W.
, and
Leong
,
M.
, 2006, “
Three-Dimensional Integrated Circuits
,”
IBM J. Res. Dev.
,
50
(
4
), pp.
491
506
. 0018-9219
3.
Gutmann
,
R. J.
,
Lu
,
J. Q.
,
Kwon
,
Y.
,
McDonald
,
J. F.
, and
Cale
,
T. S.
, 2001, “
Three-Dimensional (3D) ICs: A Technology Platform for Integrated Systems and Opportunities for New Polymeric Adhesives
,”
First International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics
, pp.
173
180
.
4.
Ababei
,
C.
,
Maidee
,
P.
, and
Bazargan
,
K.
, 2004, “
Exploring Potential Benefits of 3D FPGA Integration
,”
Field-Programmable Logic and Its Applications
, pp.
874
880
.
5.
Das
,
S.
,
Chandrakasan
,
A.
, and
Reif
,
R.
, 2003, “
Three-Dimensional Integrated Circuits: Performance, Design Methodology, and CAD Tools
,”
Proceedings of IEEE Computer Society Annual Symposium on VLSI
, pp.
13
18
.
6.
Alam
,
S. M.
,
Troxel
,
D. E.
, and
Thompson
,
C. V.
, 2003, “
Layout-Specific Circuit Evaluation in 3-D Integrated Circuits
,”
Analog Integr. Circuits Signal Process.
,
35
(
2/3
), pp.
199
206
. 0925-1030
7.
Cong
,
J.
,
Wei
,
J.
, and
Zhang
,
Y. A.
, 2004, “
Thermal-Driven Floorplanning Algorithm for 3D ICs
,”
Proceedings of the IEEE International Conference on Computer-Aided Design
.
8.
Rahman
,
A.
, and
Reif
,
R.
, 2001, “
Thermal Analysis of Three-Dimensional (3-D) Integrated Circuits (ICs)
,”
Proceedings of the IEEE 2001 Interconnect Technology Conference
, pp.
157
159
.
9.
Ajami
,
A. H.
,
Pedram
,
M.
, and
Banerjee
,
K.
, 2001, “
Effects of Non-Uniform Substrate Temperature on the Clock Signal Integrity in High Performance Designs
,”
IEEE Conference on Custom Integrated Circuits
, pp.
233
236
.
10.
Banerjee
,
K.
,
Pedram
,
M.
, and
Ajami
,
A. H.
, 2001, “
Analysis and Optimization of Thermal Issues in High-Performance VLSI
,”
ACM/SIGDA International Symposium on Physical Design (ISPD)
, pp.
230
237
.
11.
Lee
,
S.
, and
Lemczyk
,
T. F.
, and
Yovanovich
,
M. M.
, 1992, “
Analysis of Thermal-Vias in High Density Interconnect Technology
,”
Semiconductor Thermal Measurement and Management Symposium
, pp.
55
61
.
12.
Li
,
R. S.
, 1998, “
Optimization of Thermal Via Design Parameters Based on Analytical Thermal Resistance Model
,”
The Sixth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, pp.
475
480
.
13.
Pinjala
,
D.
,
Iyer
,
M. K.
,
Guan
,
C. S.
, and
Rasiah
,
I. J.
, 2000,
Thermal Characterization of Vias Using Compact Models
,”
Proceedings of the Third Electronics Packaging Technology Conference
, pp.
144
147
.
14.
Cong
,
J.
,
Wei
,
J.
, and
Zhang
,
Y. A.
, 2004, “
Thermal-Driven Floorplanning Algorithm for 3D ICs
,”
Proceedings of the IEEE International Conference on Computer-Aided Design
.
15.
Goplen
,
B.
, and
Sapatnekar
,
S. S.
, 2006, “
Placement of Thermal Vias in 3-D ICs Using Various Thermal Objectives
,”
IEEE Trans. Comput. Aided Des. Integrated Circ. Syst.
,
25
(
4
), pp.
692
709
. 0278-0070
16.
Wei
,
X.
, and
Joshi
,
Y.
, 2003, “
Optimization Study of Stacked Micro-Channel Heat Sinks for Micro-Electronic Cooling
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
26
(
1
), pp.
55
61
.
17.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanavich
,
M. M.
, 2005, “
Optimization of Pin-Fin Heat Sinks Using Entropy Generation Minimization
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
28
(
2
), pp.
247
254
.
18.
Tuckerman
,
D. B.
, and
Pease
,
R. F.
, 1981, “
High Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
0741-3106,
2
(
5
), pp.
126
129
.
19.
Liu
,
D.
, and
Garimella
,
S. V.
, 2005, “
Analysis and Optimization of the Thermal Performance of Microchannel Heat Sinks
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
15
(
1
), pp.
7
26
.
20.
Ryu
,
J. H.
,
Choi
,
D. H.
, and
Kim
,
S. J.
, 2002, “
Numerical Optimization of the Thermal Performance of a Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
(
13
), pp.
2823
2827
. 0017-9310
21.
Kandlikar
,
S. G.
, and
Upadhye
,
H. R.
, 2005, “
Extending the Heat Flux Limit With Enhanced Microchannels in Direct Single-Phase Cooling of Computer Chips
,”
Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, pp.
8
15
.
22.
Puttaswamy
,
K.
, and
Loh
,
G. H.
, 2006, “
Thermal Analysis of a 3D Die-Stacked High-Performance Microprocessor
,”
Proceedings of the 16th ACM Great Lakes Symposium on VLSI
, pp.
19
24
.
23.
Chiang
,
T. Y.
,
Souri
,
S. J.
,
Chui
,
C. O.
, and
Saraswat
,
K. C.
, 2001, “
Thermal Analysis of Heterogeneous 3D ICs With Various Integration Scenarios
,”
Electron Devices Meeting International IEDM Technical Digest
, pp.
31
32
.
24.
Rayasam
,
M.
,
Srinivasan
,
V.
, and
Subbarayan
,
G.
, 2007, “
CAD Inspired Hierarchical Partition of Unity Constructions for NURBS-Based, Meshless Design, Analysis and Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
72
, pp.
1452
1489
.
25.
Zhang
,
X.
,
Rayasam
,
M.
, and
Subbarayan
,
G.
, 2007, “
A Meshless, Compositional Approach to Shape Optimal Design
,”
Comput. Methods Appl. Mech. Eng.
,
196
, pp.
2130
2146
. 0045-7825
26.
Zhang
,
X.
, and
Subbarayan
,
G.
, 2006, “
jNURBS: An Object-Oriented, Symbolic Framework for Integrated, Meshless Analysis and Optimal Design
,”
Adv. Eng. Software
0965-9978,
37
(
5
), pp.
287
311
.
27.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
, 2003,
Topology Optimization: Theory, Methods and Applications
,
Springer
,
Berlin
.
28.
Eschenauer
,
H. A.
, and
Olhoff
,
N.
, 2001, “
Topology Optimization of Continuum Structures: A Review
,”
Appl. Mech. Rev.
0003-6900,
54
(
4
), pp.
331
389
.
29.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
, 2001, “
Topology Optimization of Compliant Mechanisms With Multiple Materials Using a Peak Function Material Interpolation Scheme
,”
Struct. Multidiscip. Optim.
1615-147X,
23
, pp.
49
62
.
30.
Swan
,
C. C.
, and
Arora
,
J. S.
, 1997, “
Topology Design of Material Layout in Structured Composites of High Stiffness and Strength
,”
Struct. Optim.
0934-4373,
13
, pp.
45
59
.
31.
Swan
,
C. C.
, and
Kosaka
,
I.
, 1997, “
Voigt–Reuss Topology Optimization for Structures With Linear Elastic Material Behaviors
,”
Int. J. Numer. Methods Eng.
0029-5981,
40
, pp.
3033
3057
.
You do not currently have access to this content.