Improvements in thermal interface materials (TIMs) can enhance heat transfer in electronics packages and reduce high temperatures. TIMs are generally composed of highly conductive particle fillers and a matrix that allows for good surface wetting and compliance of the material during application. Two types of TIMs are tested based on the addition of carbon nanotubes (CNTs): one mixed with a commercial TIM product and the other only CNTs and silicone oil. The materials are tested using an in-house apparatus that allows for the simultaneous measurement of temperature, pressure, heat flux, and TIM thickness. Results show that addition of large quantities of CNTs degrades the performance of the commercial TIM, while the CNT-silicone oil mixtures showed improved performance at high pressures. Thickness and pressure measurements indicate that the CNT-thermal grease mixtures are more compliant, with a small increase in bulk thermal conductivity over the range of tested pressures.

References

1.
Gwinn
,
J. P.
, and
Webb
,
R. L.
, 2003, “
Performance and Testing of Thermal Interface Materials
,”
Microelectron. J.
,
34
, pp.
215
222
.
2.
Singhal
,
V.
,
Seigmund
,
T.
, and
Garimella
,
S. V.
, 2004, “
Optimization of Thermal Interface Materials for Electronics Cooling Applications
,”
IEEE Trans. Compon. Packag. Technol.
,
27
(
2
), pp.
244
252
.
3.
Prasher
,
R.
, 2006, “
Thermal Interface Materials: Historical Perspective, Status, and Future Directions
,”
Proc. IEEE
,
94
(
8
), pp.
1571
1586
.
4.
Misra
,
S.
, and
Timmerman
,
J.
, 2009, “
Thermally Conductive Liquid Materials for Electronics Packaging
,”
IMAPS Advanced Technology Workshop on Thermal Management
,
Palo Alto, CA
.
5.
Zhou
,
P.
, and
Goodson
,
K. E.
, 2001, “
Modeling and Measurement of Pressure-Dependent Junction-Spreader Thermal Resistance for Integrated Circuits
,”
Proc. ASME, Heat Transfer Division, HTD
,
369
(
7
), pp.
51
57
.
6.
Prasher
,
R.
, 2001, “
Surface Chemistry and Characteristic Based Model for the Thermal Contact Resistance of Fluidic Interstitial Thermal Interface Materials
,”
ASME J. Heat Transfer
,
123
, pp.
969
975
.
7.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
, 2003, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
,
93
(
2
), pp.
793
815
.
8.
Prasher
,
R. S.
, 2004, “
Rheology Based Modeling and Design of Particle Laden Polymeric Thermal Interface Materials
,”
Thermomechanical Phenomena in Electronic Systems-Proceedings of the Intersociety Conference
, Vol.
1
, pp.
36
44
.
9.
Yovanovich
,
M. M.
, and
Marotta
,
E. E.
, 2003, “
Thermal Spreading and Contact Resistances
,”
Heat Transfer Handbook
,
A.
Bejan
and
A. D.
Krauf
, eds.,
Wiley
,
New York
.
10.
Mikic
,
B. B.
, 1974, “
Thermal Contact Conductance: Theoretical Considerations
,”
ASME J. Heat Transfer
,
17
, pp.
205
214
.
11.
Hu
,
X.
,
Jiang
,
L.
, and
Goodson
,
K. E.
, 2004, “
Thermal Conductance Enhancement of Particle-Filled Thermal Interface Materials Using Carbon Nanotube Inclusions
,”
Thermomechanical Phenomena in Electronic Systems-Proceedings of the Intersociety Conference
, Vol.
1
, pp.
63
69
.
12.
Devpura
,
A.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
, 2000, “
Percolation Theory Applied to the Analysis of Thermal Interface Materials in Flip-Chip Technology
,”
Thermomechanical Phenomena in Electronic Systems-Proceedings of the Intersociety Conference
, Vol.
1
, pp.
21
28
.
13.
Berber
,
S.
,
Kwon
,
Y. K.
, and
Tomanek
,
D.
, 2000, “
Unusually High Thermal Conductivity of Carbon Nanotubes
,”
Phys. Rev. Lett.
,
84
(
20
), pp.
4613
4616
.
14.
Xu
,
J.
, and
Fisher
,
T. S.
, 2004, “
Thermal Contact Conductance Enhancement With Carbon Nanotube Arrays
,”
Proc. ASME, Electron. Photonic Packag., EPP
,
4
, pp.
559
563
.
15.
Coles
,
O.
, 2009, “
80-Way Thermal Interface Material Performance Test
,” Benchmark Reviews.com, Featured Reviews: Cooling, pp.
1
14
.
16.
ASTM Standard D5470-06
, 2006, “
Standard Test Method for Thermal Transmission Properties of Thermally Electrical Insulation Materials
,” ASTM International, West Conshohocken, PA.
17.
Rosshirt
,
M.
,
Fabris
,
D.
,
Tu
,
T.
,
Wilhite
,
P.
, and
Yang
,
C. Y.
, 2009, “
Comparison of Carbon-Based Nanostructures With Commercial Products as Thermal Interface Materials
,”
Mater. Res. Soc. Symp. Proc.
,
1158
, pp.
37
42
, 1158-F03-03.
You do not currently have access to this content.