In 2011, IBM announced the Power 775 supercomputing node/system which, for the time, was a significant increase in computing performance and energy efficiency. The system was designed from the start with water cooling in mind. The result: a system with greater than 95% of its heat load conducted directly to water and a system that, together with a rear door heat exchanger (HX), removes 100% of its heat load to water with no requirement for room air conditioning. In addition to direct water cooling the processor, the memory, power conversion, and input–output electronics also conduct their heat directly to water. Also included within the framework of the system is a disk storage unit (i.e., disk enclosure) containing an interboard air-to-water HX. The heart of the water cooling system is the water conditioning unit (WCU). The WCU circulates system water at a controlled temperature and flow rate while also transferring the electronics heat load to the data center facility building chilled water (BCW) system. The brain for this system is the motor drive and control assembly (MDA-WCU). In addition to the pump motor drive function, the MDA-WCU contains the control circuitry and associated firmware that maintains system water at a prescribed temperature above the room dew point irrespective of system and or facilities thermal/flow transients. It is also capable of error detection and fault isolation that, together with higher level system firmware, facilitates serviceability, and availability. The paper will present the WCU and MDA-WCU design with an emphasis on the control methodologies and algorithms.

References

1.
Shekhar
,
B.
, and
Chien
,
A. A.
,
2011
, “
The Future of Microprocessors
,”
Commun. ACM
,
54
(
5
), pp.
67
77
.10.1145/1941487.1941507
2.
Kong
,
J.
,
Chung
,
S. W.
, and
Skadron
,
K.
,
2012
, “
Recent Thermal Management Techniques for Microprocessors
,”
ACM Comput. Surv.
,
44
(
3
), pp.
1
42
.10.1145/2187671.2187675
3.
Schmidt
,
R. R.
, and
Price
,
D.
, “
Thermal Challenges in the Next Generation of Computer, Telecommunication, and Military Electronic Equipment
,”
The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm 2004
), Las Vegas, NV, June 1–4, pp. 709–710.10.1109/ITHERM.2004.1318365
4.
Ellsworth
,
M. J.
, Jr.
,
Campbell
,
L. A.
,
Simons
,
R. E.
,
Iyengar
,
M. K.
,
Schmidt
,
R. R.
, and
Chu
,
R. C.
,
2008
, “
The Evolution of Water Cooling for IBM Large Server Systems: Back to the Future
,” 11th Intersociety Conference on Thermal and Thermochemical Phenomena in Electronic Systems (
ITHERM 2008
), Orlando, FL, May 28–31, pp. 266–274.10.1109/ITHERM.2008.4544279.
5.
Simons
,
R. E.
,
1995
, “
The Evolution of IBM High Performance Cooling Technology
,”
IEEE Trans. Comp. Pack. Manuf. Tech. A
,
18
(4), pp. 805–811.10.1109/95.477467
6.
Bar-Cohen
,
A.
,
1987
, “
Thermal Management of Air- and Liquid Cooled Multi-Chip Modules
,”
IEEE Trans. Compon., Hybrids Manuf. Technol.
,
10
(
2
), pp.
159
175
.10.1109/TCHMT.1987.1134734
7.
Kaneko
,
K.
,
Seyama
,
K.
, and
Suzuki
,
M.
,
1990
, “
LSI Packaging and Cooling Technologies for Fujitsu VP2000 Series
,”
Fujitsu Sci. Technol. J.
,
41
(
1
), pp.
12
19
.
8.
Kaneko
,
K.
,
Kuwabara
,
K.
,
Kikuchi
,
S.
, and
Kano
,
T.
,
1991
, “
Hardware Technology for Fujitsu VP2000 Series
,”
Fujitsu Sci. Technol. J.
,
37
(
2
), pp.
158
168
.
9.
Kobayashi
,
F.
,
Watanabe
,
Y.
,
Yamamoto
,
M.
,
Anzai
,
A.
,
Takahashi
,
A.
,
Daikoku
,
T.
, and
Fujita
,
T.
,
1991
, “
Hardware Technology for Hitachi M-880 Processor Group
,”
41st Electronic Components and Technology Conference
, Atlanta, GA, May 11–16, pp.
693
703
.10.1109/ECTC.1991.163956
10.
Watari
,
T.
, and
Murano
,
H.
,
1985
, “
Packaging Technology for the NEC SX Supercomputer
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
8
(
4
), pp.
462
467
.10.1109/TCHMT.1985.1136535
11.
Murano
,
H.
, and
Watari
,
T.
,
1992
, “
Packaging Technology for the NEC SX-3 Supercomputers
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
15
(
4
), pp.
411
417
.10.1109/33.159867
12.
Campbell
,
L. A.
,
Ellsworth
,
M. J.
, Jr.
, and
Sinha
,
A.
,
2009
, “
Analysis and Design of the IBM Power 575 Supercomputing Node Cold Plate Assembly
,”
ASME
Paper No. InterPACK2009-89244.10.1115/InterPACK2009-89244
13.
Ellsworth
,
M. J.
, Jr.
, and
Iyengar
,
M. K.
,
2009
, “
Energy Efficiency Analyses and Comparison of Air and Water Cooled High Performance Servers
,”
ASME
Paper No. InterPACK2009-89248.10.1115/InterPACK2009-89248
14.
Ellsworth
,
M. J.
, Jr.
,
Goth
,
G. F.
,
Zoodsma
,
R. J.
,
Arvelo
,
A.
,
Campbell
,
L. A.
, and
Anderl
,
W. J.
,
2012
, “
An Overview of the IBM Power 775 Supercomputer Water Cooling System
,”
ASME J. Electron. Packag.
,
143
(
2
), p. 020906.10.1115/1.4006140
15.
White
,
F. M.
,
1979
,
Fluid Mechanics
,
McGraw-Hill
,
New York
, p.
650
.
16.
Incopera
,
F. P.
, and
DeWitt
,
D. P.
,
1990
, Fundamentals of Heat and Mass Transfer, 3rd ed., Wiley, New York, pp.
658
666
.
17.
Astrom
,
K.
, and
Hagglund
,
T.
,
1995
,
PID Controllers: Theory, Design, and Tuning
, 2nd ed.,
Instrument Society of America
,
Research Triangle Park, NC
.
You do not currently have access to this content.