Shock loads which are characterized by high intensity, short duration, and vibration at varied frequencies can lead to the failure of embedded electronics typically used to operate/control numerous devices. Failure of electronics renders these devices ineffective, since they cannot carry out their intended function. It is therefore the objective of this work to determine the behavior of a typical electronic board assembly subject to severe shock loads and the means to protect the electronics. Specifically, three aspects of the work were considered using 3D finite element (FE) simulations in supercomputer environment. The first was concerned with the dynamic behavior of selected electronic devices subject to shock loads. The second with the ability of different potting materials to attenuate the considered shock loads. The third was with the use of a new bilayer potting configurations to effectively attenuate the shock load and vibration of the electronic board. The shock loads were delivered to the Joint Electron Device Engineering Council (JEDEC) standard board using simulated drop impact test. The effectiveness of different protective potting designs to attenuate the effect of shock loads was determined by considering the two key factors of electronics reliability: the stress in the interconnection and deformation of the printed circuit board. Our results reveal the remarkable effectiveness of the bilayer potting approach over the commonly adopted single potting attenuation strategy.

References

1.
Viswanadham
,
P.
, and
Singh
,
P.
,
1998
,
Failure Modes and Mechanisms in Electronic Packaging
,
Thomson Science
,
New York
.
2.
Zhu
,
L.
, and
Marcinkiewicz
,
W.
,
2005
, “
Drop Impact Reliability Analysis of CSP Packages at Board and Product System Levels Through Modeling Approaches
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
3
), pp.
449
456
.10.1109/TCAPT.2005.853591
3.
Wong
,
E. H.
,
Seah
,
S. K. W.
, and
Shim
,
V. P. W.
,
2008
, “
A Review of Board Level Solder Joints for Mobile Applications
,”
Microelectron. Reliab.
,
48
(
11–12
), pp.
1747
1758
.10.1016/j.microrel.2008.08.006
4.
Wong
,
E. H.
,
Seah
,
S. K. W.
,
van Driel
,
W. D.
,
Caers
,
J. F. J. M.
,
Owens
,
N.
, and
Lai
,
Y. S.
,
2009
, “
Advances in the Drop-Impact Reliability of Solder Joints for Mobile Applications
,”
Microelectron. Reliab.
,
49
(
2
), pp.
139
149
.10.1016/j.microrel.2008.12.001
5.
Nunziato
,
J. W.
, and
Schuler
,
K. W.
,
1973
, “
Shock Pulse Attenuation in a Nonlinear Viscoelastic Solid
,”
J. Mech. Phys. Solids
,
21
(
6
), pp.
447
457
.10.1016/0022-5096(73)90012-4
6.
Chen
,
Y.
,
Zhang
,
Z.
,
Wang
,
Y.
,
Hua
,
H.
, and
Gou
,
H.
,
2009
, “
Attenuating Performance of a Polymer Layer Coated Onto Floating Structures Subjected to Water Blasts
,”
Eur. J. Mech. A
,
28
(
3
), pp.
591
598
.10.1016/j.euromechsol.2008.10.003
7.
Ardebili
,
H.
, and
Pecht
,
M. G.
,
2009
,
Encapsulation Technologies for Electronic Applications
,
William Andrew
,
Oxford, UK
.
8.
Harrison
,
J. C.
,
1977
, “
Control of the Encapsulation Material as an Aid to Long Term Reliability in Plastic Encapsulated Semiconductor Components
,”
Microelectron. Reliab.
,
16
(
3
), pp.
233
244
.10.1016/0026-2714(77)90880-0
9.
Kinjo
,
N.
,
Ogata
,
M.
,
Nishi
,
K.
, and
Kaneda
,
A.
,
1989
, “
Epoxy Molding Compounds as Encapsulation Materials for Microelectronic Devices
,”
Adv. Polym. Sci.
,
88
, pp.
1−48
.10.1007/BFb0017963
10.
Ketcham
,
C.
,
1998
, “
Printed Circuit Packaging for High Vibration and Temperature Environments
,” U.S. Patent No. 4768286.
11.
Benson
,
R. C.
,
Farrar
,
D.
, and
Miragliotta
,
J. A.
,
2008
, “
Polymer Adhesives and Encapsulants for Microelectronic Applications
,”
Johns Hopkins APL Tech. Dig.
,
28
(
1
), pp.
58−71
.
12.
Goth
,
C.
,
Franke
,
J.
,
Reinhardt
,
A.
, and
Widemann
,
P.
,
2012
, “
Reliability of Molded Interconnect Devices (MID) Protected by Encapsulation Methods Overmolding, Potting and Coating
,”
7th International Conference on Microsystems, Packaging, Assembly and Circuits Technology
(
IMPACT
), Taipei, Taiwan, October 24–26, pp.
137−140
.10.1109/IMPACT.2012.6420229
13.
Birkelund
,
K.
,
Nørgaard
,
L.
, and
Thomsen
,
E. V.
,
2011
, “
Enhanced Polymeric Encapsulation for MEMS Based Multi Sensors for Fisheries Research
,”
Sens. Actuators
, A,
170
(
1–2
), pp.
196
201
.10.1016/j.sna.2011.06.008
14.
Neidigk
,
M.
,
2012
, “
Numerical Analysis of Surface Mount Electronics With Viscoelastic Epoxy Underfills and Potting
,” Ph.D. thesis, University of New Mexico, Albuquerque, NM.
15.
Jenq
,
S. T.
,
Sheua
,
H. S.
,
Yeh
,
C. L.
,
Lai
,
Y. S.
, and
Wu
,
J. D.
,
2007
, “
High-G Drop Impact Response and Failure Analysis of a Chip Packaged Printed Circuit Board
,”
Int. J. Impact Eng.
,
34
(
10
), pp.
1655
1667
.10.1016/j.ijimpeng.2006.07.004
16.
Steinberg
,
D. S.
,
2000
,
Vibration Analysis for Electronic Equipment
, 3rd ed.,
John Wiley & Sons
,
New York
.
17.
Jiang
,
Y.
,
Du
,
M.
,
Huang
,
W.
,
Xu
,
W.
, and
Luo
,
L.
,
2003
, “
Simulation on the Encapsulation Effect of the High-G Shock MEMS Accelerometer
,”
5th International Conference on Electronic Packaging Technology
(
ICEPT 2003
), Shanghai, China, October 28–30, pp.
52
55
.10.1109/EPTC.2003.1298692
18.
Jiang
,
Y.
,
Du
,
M.
,
Luo
,
L.
, and
Li
,
X. X.
,
2004
, “
Simulation of the Potting Effect on the High-G MEMS Accelerometer
,”
J. Electron. Mater.
,
33
(
8
), pp.
893
899
.10.1007/s11664-004-0217-4
19.
Chao
,
N. H.
,
Cordes
,
J. A.
,
Carlucci
,
D.
,
de Angelis
,
M. E.
, and
Lee
,
J.
,
2011
, “
The Use of Potting Materials for Electronic-Packaging Survivability in Smart Munitions
,”
ASME J. Electron. Packag.
,
133
(
4
), p.
041003
.10.1115/1.4005375
20.
Haynes
,
A.
, and
Cordes
,
J. A.
,
2011
, “
Characterization of a Potting Material for Gun Launch
,”
26th International Symposium on Ballistics
, Miami, FL, September 12–16,
E.
Baker
and
D.
Templeton
, eds.,
DEStech Publications Inc.
,
Lancaster, PA
, pp.
1038
1041
.
21.
Reinhardt
,
L. E.
,
Cordes
,
J. A.
,
Haynes
,
A. S.
, and
Metz
,
J. D.
,
2013
, “
Assessment of Need for Solder in Modeling Potted Electronics During Gun-Shot
,”
ASME J. Appl. Mech.
,
80
(
3
), p.
031502
.10.1115/1.4023336
22.
Haynes
,
A. S.
,
Cordes
,
J. A.
, and
Krug
,
J.
,
2013
, “
Thermomechanical Impact of Polyurethane Potting on Gun Launched Electronics
,”
J. Eng.
,
2013
, p.
148362
.10.1155/2013/148362
23.
Clelland
,
I. W.
,
Price
R. A.
, and
Jelonek
,
P. R.
,
2012
, “
Double Layer Capacitor Using Polymer Electrolyte in Multilayer Construction
,” U.S. Patent No. US8098482 B2.
24.
Chattopadhyay
,
S.
, and
Meredith
,
J. C.
,
2004
, “
Instability and Dewetting of Conducting-Insulating Polymer Thin-Film Bilayers
,”
Macromol. Rapid Commun.
,
25
(
1
), pp.
275
279
.10.1002/marc.200300150
25.
Carlson
,
J.
,
2003
, “
Board Level Drop Test Method of Component for Handheld Electronic Products
,”
JEDEC Solid State Technology Association, Arlington, VA, Paper No. JESD22-B111
.
26.
“SHARCNET: Welcome,” 2009, SHARCNET, London, ON, Canada, www.sharcnet.ca. Last accessed on September 8th
2013
.
27.
Tsai
,
T. Y.
,
Lai
,
Y. S.
,
Yeh
,
C. L.
, and
Chen
,
R. S.
,
2008
, “
Structural Design Optimization for Board-Level Drop Reliability of Wafer-Level Chip-Scale Packages
,”
Microelectron. Reliab.
,
48
(
5
), pp.
757
762
.10.1016/j.microrel.2008.01.003
28.
Yang
,
F.
, and
Meguid
,
S. A.
,
2013
, “
Efficient Multi-Level Modelling Technique for Determining Effective Board Drop Reliability of PCB Assembly
,”
Microelectron. Reliab.
,
53
(
7
), pp.
975
984
.10.1016/j.microrel.2013.03.014
29.
Zhang
,
S.
,
Panat
,
R.
, and
Hsia
,
K. J.
,
2003
, “
Influence of Surface Morphology on the Adhesive Strength of Aluminum/Epoxy Interfaces
,”
J. Adhes. Sci. Technol.
,
17
(
12
), pp.
1685
1711
.10.1163/156856103322396749
30.
Dassault Systèmes
,
2011
, ABAQUS Documentation Version 6.11.
31.
Chong
,
D. Y. R.
,
Che
,
F. X.
,
Pang
,
J. H. L.
,
Ng
,
K.
,
Tan
,
J. Y. N.
, and
Low
,
P. T. H.
,
2006
, “
Drop Impact Reliability Testing for Lead-Free and Lead-Based Soldered IC Packages
,”
Microelectron. Reliab.
,
46
(
7
), pp.
1160
1171
.10.1016/j.microrel.2005.10.011
32.
Wong
,
E. H.
,
Lim
,
K. M.
,
Lee
,
N.
,
Seah
,
S.
,
Hoe
,
C.
, and
Wang
,
J.
,
2002
, “
Drop Impact Test—Mechanics & Physics of Failure
,” 4th Electronics Packaging Technology Conference
(EPTC)
,
Singapore
, December 10–12, pp.
327
333
.10.1109/EPTC.2002.1185692
33.
Yu
,
D.
,
Kwak
,
J.
,
Park
,
S.
,
Chung
,
S.
, and
Yoon
,
J. Y.
,
2012
, “
Effect of Shield-Can on Dynamic Response of Board-Level Assembly
”,
ASME J. Electron. Packag.
,
134
(
3
), p.
031010
.10.1115/1.4007118
34.
Kwak
,
J.
,
Yu
,
D.
,
Park
,
S.
,
Chung
,
S.
,
Yoon
,
J. Y.
, and
Jang
,
K. W.
,
2010
, “
Effect of Shield-Can for Drop/Shock Behavior of Board Level Assembly
,”
12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
),
Las Vegas, NV
, June 2–5.10.1109/ITHERM.2010.5501286
You do not currently have access to this content.