The revolutionary changes in automotive industry toward fully connected automated electrical vehicles necessitate developments in automotive electronics at unprecedented speed. Signal, control, and power electronics will heterogeneously be integrated at minimum space with sensors and actuators to form highly compact and ultra-smart systems for functions like traction, lighting, energy management, computation, and communication. Most of these systems will be highly safety relevant with the requirements in system availability exceeding today's already high automotive standards. Unlike the human drivers of today, passengers in the automated car do not pay constant attention to the driving actions of the vehicle. Hence, reliability research is massively challenged by the new automotive applications. Guaranteeing the specified lifetime at statistical average is no longer sufficient. Assuring that no failure of an individual safety relevant part occurs unexpectedly becomes most important. The paper surveys the priority actions underway to cope with the tremendous challenges. It highlights practical examples in all three directions of reliability research: (i) Experimental reliability tests and physical analyses: New and highly efficient accelerated stress tests are able to cover the complex and multifold loading situation in the field. New analytics techniques can identify the typical failure modes and their physical root causes; (ii) Virtual techniques: Schemes of validated simulations allow capturing the physics of failure (PoF) proactively in the design for reliability (DfR) process; and (iii) Prognostics health management (PHM). A new concept is introduced for adding a minimum of PHM features at various levels of automotive electronics to provide functional safety as required for autonomous vehicles. This way, the new generation of reliability methods will continuously provide estimates of the remaining useful life (RUL) for each relevant part under the actual use conditions to allow triggering maintenance in time

References

1.
Rzepka
,
S.
, Andersson, D., and Vandevelde, B.,
2017
, “
EPoSS Strategic Research Agenda
,” European Technology Platform of Smart Systems Integration (EPoSS) e.V, Berlin, Chap. 4.2.
2.
Buckl
,
C.
,
Camek
,
A.
,
Kainz
,
G.
,
Simon
,
C.
,
Mercep
,
L.
,
Stahle
,
H.
, and
Knoll
,
A.
,
2012
, “
The Software Car: Building ICT Architectures for Future Electric Vehicles
,”
IEEE International Electric Vehicle Conference
(
IEVC
), Greenville, SC, Mar. 4–8, pp. 1–8.
3.
Zhang
,
G. Q.
,
van Driel
,
W. D.
, and
Fan
,
X. J.
,
2006
,
Mechanics of Microelectronics
,
Springer
,
Dordrecht, The Netherlands
.
4.
Rzepka
,
S.
,
2010
, “
Virtual Prototyping for Rapid Development of Smart System Technologies and Products
,” EPoSS Annual Forum, Lisbon, Portugal, Oct. 8, pp. 1–6.
5.
Otto
,
A.
,
Matkowski
,
P.
,
Brabandt
,
I.
,
Winkler
,
T.
,
Michel
,
B.
, and
Rzepka
,
S.
,
2013
, “
New Reliability Testing Methods for Electromobility Applications
,”
AME Conference, Toronto, ON, Canada, Oct. 21–25
, pp. 1–6.
6.
Matkowski
,
P.
,
2011
, “
Reliability of SnAgCu Solder Joints During Vibration in Various Temperature
,” 34th International Spring Seminar on Electronics Technology
(
ISSE
2011), High Tatras, Slovakia, May 11–15, pp.
341
347
.
7.
Matkowski
,
P.
,
Dudek
,
R.
, and
Kreyssig
,
K.
,
2011
, “
Reliability Testing of SnAgCu Solder Joints Under Combined Loading
,”
Micromater. Nanomater.
,
12
, pp.
86
91
.
8.
Otto
,
A.
,
Döring
,
R.
,
Scheiter
,
L.
,
Armengaud
,
E.
, and
Rzepka
,
S.
, 2017, “
Thermo-Mechanical and Mechanical Robustness of the INCOBAT Smart Battery Management System
,”
SSI Conference
, Cork, Ireland, Mar. 8–9, pp. 439–442.
9.
Otto
,
A.
,
Vohra
,
A.
, and
Rzepka
,
S.
,
2013
, “
New Test Bench Active Power Cycling Tests
,”
Micromater. Nanomater.
,
15
, pp.
132
134
.
10.
Otto
,
A.
,
Kreyssig
,
K.
,
Dudek
,
R.
,
Lole
,
A.
, and
Rzepka
,
S.
,
2014
, “
Reliability Testing of High-Temperature Resistant Electronics
,” ECPE Workshop Intelligent Reliability Testing
, Nuremberg, Germany, Dec. 2–3, pp. 1–10.
11.
Otto
,
A.
,
Dudek
,
R.
,
Rzepka
,
S.
,
Abo Ras
,
M.
,
Essen
,
T. V.
,
Bast
,
M.
,
Hindel
,
A.
,
Eisele
,
R.
,
Müter
,
U.
, and
Lunding
,
A.
,
2017
, “
Reliability Investigation on SiC Based Diode and MOSFET Modules Developed for High Power Conversion in Medical X-Ray Applications
,” International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM), Nuremberg, Germany, May 16–18, pp.
1
8
.
12.
Dudek
,
R.
,
Sommer
,
P.
,
Döring
,
R.
,
Herberholz
,
T.
,
Fix
,
A.
,
Seiler
,
B.
, and
Rzepka
,
S.
,
2014
, “
Thermo-Mechanical Behavior and Reliability Issues for High Temperature Interconnections
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Orlando, FL, May 27–30, pp. 912–919.
13.
Dudek
,
R.
,
Döring
,
R.
,
Rzepka
,
S.
,
Ehrhardt
,
C.
,
Günther
,
M.
, and
Haag
,
M.
,
2015
, “
Electro-Thermo-Mechanical Analyses on Silver Sintered IGBT-Module Reliability in Power Cycling
,”
16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems
(
EuroSimE
), Budapest, Hungary, Apr. 19–12.
14.
Dudek
,
R.
,
Döring
,
R.
,
Otto
,
A.
,
Rzepka
,
S.
,
Stegmeier
,
S.
,
Kiefl
,
S.
,
Lunding
,
A.
, and
Eisele
,
R.
,
2017
, “
FE Analyses and Power Cycling Tests on the Thermo-Mechanical Performance of Silver Sintered Power Semiconductors With Different Interconnection Technologies
,”
16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Orlando, FL, May 30–June 2, pp. 1145–1152.
15.
Dudek
,
R.
,
Hildebrand
,
M.
,
Rzepka
,
S.
,
Beintner
,
J.
,
Döring
,
R.
,
Scheiter
,
L.
,
Seiler
,
B.
,
Fries
,
T.
, and
Ortmann
,
R. W.
,
2017
, “
Board Level Reliability Assessment of Consumer Components for Automotive Use by Simulation and Sophisticated Optical Deformation Analyses
,”
18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems
(
EuroSimE
), Dresden, Germany, Apr. 3–5, p. 7926277.
16.
Dudek
,
R.
,
Hildebrand
,
M.
,
Rzepka
,
S.
,
Fries
,
T.
,
Döring
,
R.
,
Seiler
,
B.
,
Novak
,
M.
, and
Ortmann
,
R. W.
,
2017
, “
A Combined Simulation and Optical Measurement Technique for Investigation of System Effects on Components Solder Fatigue
,”
21st European Microelectronics and Packaging Conference
, Warsaw, Poland, Sept. 10–13, pp. 1–6.
17.
Vogel
,
D.
,
Auerswald
,
E.
,
Gadhiya
,
G.
, and
Rzepka
,
S.
,
2016
, “
Fast and Trusted Intrinsic Stress Measurement to Facilitate Improved Reliability Assessments
,”
Microelectron. Reliab.
,
64
, pp.
276
280
.
18.
Auersperg
,
J.
,
Auerswald
,
E.
,
Collet
,
C.
,
Dean
,
T.
,
Vogel
,
D.
,
Winkler
,
T.
, and
Rzepka
,
S.
,
2017
, “
Effects of Residual Stresses on Cracking and Delamination Risks of an Avionics MEMS Pressure Sensor
,” 18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (
EuroSimE
), Dresden, Germany, Apr. 3–5, p. 7926235.
19.
Lall
,
P.
,
Islam
,
M. N.
,
Rahim
,
M. K.
, and
Suhling
,
J. C.
,
2006
, “
Prognostics and Health Management of Electronic Packaging
,”
IEEE Trans. Compon. Packaging Technol.
,
29
(
3
), pp.
666
677
.
20.
Wang
,
Y.
,
Miao
,
Q.
, and
Pecht
,
M.
,
2011
, “
Health Monitoring of Hard Disk Drive Based on Mahalanobis Distance
,”
Prognostics and System Health Managment Conference
, Shenzhen, China, May 24–25, pp.
1
8
.
21.
Lall
,
P.
,
Lowe
,
R.
, and
Goebel
,
K.
,
2013
, “
Comparison of Prognostic Health Management Algorithms for Assessment of Electronic Interconnect Reliability
,”
ASME J. Electron. Packag.
,
136
(4), p. 041013.
22.
Vichare
,
N.
,
Rodgers
,
P.
,
Eveloy
,
V.
, and
Pecht
,
M. G.
,
2004
, “
In Situ Temperature Measurement of a Notebook Computer—A Case Study in Health and Usage Monitoring of Electronics
,”
IEEE Trans. Device Mater. Reliab.
,
4
(
4
), pp.
658
663
.
23.
Rzepka
,
S.
, and
Gromala
,
P. J.
,
2017
, “
Integrated Smart Features Assure the High Functional Safety of the Electronics Systems as Required for Fully Automated Vehicles
,”
Advanced Microsystems for Automotive Applications 2017
,
C.
Zachäus
,
B.
Müller
, and
G.
Meyer
, eds.,
Springer Verlag
, Cham, Switzerland, pp.
167
178
.
24.
Lall
,
P.
,
Lowe
,
R.
, and
Goebel
,
K.
,
2012
, “
Cost Assessment for Implementation of Embedded Prognostic Health Management for Electronic Systems
,”
ASME
Paper No. IMECE2012-93058.
25.
Gromala
,
P.
,
Palczynska
,
A.
, and
Han
,
B.
,
2015
, “
Prognostic Approaches for the Wirebond Failure Prediction in Power Semiconductors: A Case Study Using DPAK Package
,”
16th International Conference on Electronic Packaging Technology
(
ICEPT
), Changsha, China, Aug. 11–14, pp.
413
418
.
26.
Schindler-Saefkow
,
F.
,
Rost
,
F.
,
Faust
,
W.
,
Wunderle
,
B.
,
Michel
,
B.
, and
Rzepka
,
S.
,
2012
, “
Stress Chip Measurements of the Internal Package Stress for Process Characterization and Health Monitoring
,”
13th International Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems
, Cascais, Portugal, Apr. 16–18, Paper No. 6191746.
27.
Frühauf
,
P.
,
Gromala
,
P.
,
Rzepka
,
S.
, and
Wilke
,
K.
,
2016
, “
Electronic Component Comprising a Plurality of Contact Structures and Method for Monitoring Contact structures of an Electronic Component
,” Patent No. EP3086132A1.
28.
Chauhan
,
P.
,
Mathew
,
S.
,
Osterman
,
M.
, and
Pecht
,
M.
,
2014
, “
In Situ Interconnect Failure Prediction Using Canaries
,”
IEEE Trans. Device Mater. Reliab.
,
14
(
3
), pp.
826
832
.
You do not currently have access to this content.