Abstract

Fused or sintered Cu nanoparticle structures are potential alternatives to solder for ultrafine pitch flip chip assembly and to sintered Ag for heat sink attach in high-temperature micro-electronics. Meaningful testing and interpretation of test results in terms of what to expect under realistic use conditions do, however, require a mechanistic picture of degradation and damage mechanisms. As far as fatigue goes, such a picture is starting to emerge. The porosity of sintered nanoparticle structures significantly affects their behavior in cycling. The very different sensitivities to parameters, compared to solder, mean new protocols will be required for the assessment of reliability. This study focused on fatigue in both isothermal and thermal cycling. During the latter, all damage occurs at the low-temperature extreme, so life is particularly sensitive to the minimum temperature and any dwell there. Variations in the maximum temperature up to 125 °C did not affect, but a maximum temperature of 200 °C led to much faster damage. Depending on particle size and sintering conditions, deformation and damage properties may also degrade rapidly over time. Our picture allows for recommendations as to more relevant test protocols for vibration, thermal cycling, and combinations of these, including effects of aging, as well as for generalization of test results and comparisons in terms of anticipated behavior under realistic long-term use conditions. Also, the fatigue life seems to vary with the ultimate strength, meaning that simple strength testing becomes a convenient reference in materials and process optimization.

References

1.
Sim
,
G. D.
,
Won
,
S.
, and
Lee
,
S. B.
,
2012
, “
Tensile and Fatigue Behaviors of Printed Ag Thin Films on Flexible Substrates
,”
Appl. Phys. Lett.
,
101
(
19
), p.
191907
.10.1063/1.4766447
2.
Lu
,
N.
,
Wang
,
X.
,
Suo
,
Z.
, and
Vlassak
,
J.
,
2007
, “
Metal Films on Polymer Substrates Stretched Beyond 50%
,”
Appl. Phys. Lett.
,
91
(
22
), p.
221909
.10.1063/1.2817234
3.
Muralidharan
,
R.
,
Raj
,
A.
,
Sivasubramony
,
R. S.
,
Yadav
,
M.
,
Alhendi
,
M.
,
Nilsson
,
M.
,
Greene
,
C.
,
Poliks
,
M. D.
, and
Borgesen
,
P.
,
2019
, “
Effect of Substrate Properties on Isothermal Fatigue of Aerosol Jet Printed Nano-Ag Traces on Flex
,”
J. Mater. Res.
,
34
(
16
), pp.
2903
2910
.10.1557/jmr.2019.226
4.
Raj
,
A.
,
Yadav
,
M.
,
Adams
,
N. S.
,
Sivasubramony
,
R. S.
,
Alhendi
,
M.
,
Poliks
,
M.
, and
Borgesen
,
P.
,
2020
, “
Effects of Strain Rate and Dwell Time on Fatigue Damage Accumulation in Aerosol Jet Printed Nanosilver Traces on Flex
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
10
(
11
), pp.
1938
1944
.10.1109/TCPMT.2020.3025093
5.
Raj
,
A.
,
Sivasubramony
,
R. S.
,
Yadav
,
M.
,
Thekkut
,
S.
,
Khinda
,
G. S.
,
Alhendi
,
M.
,
Poliks
,
M. D.
, and
Borgesen
,
P.
,
2021
, “
Aging and Fatigue of Aerosol Jet-Printed Nano-Ag Traces on Flexible Substrate
,”
ASME J. Electron. Packag.
,
143
(
2
), p.
021006
.10.1115/1.4048591
6.
Sivasubramony
,
R. S.
,
Adams
,
N.
,
Alhendi
,
M.
,
Khinda
,
G. S.
,
Kokash
,
M. Z.
,
Lombardi
,
J. P.
,
Raj
,
A.
,
Thekkut
,
S.
,
Weerawarne
,
D. L.
,
Yadav
,
M.
,
Zachariah
,
A. V.
,
Stoffel
,
N. C.
,
Shaddock
,
D. M.
,
Yin
,
L.
,
Poliks
,
M. D.
, and
Borgesen
,
P.
,
2018
, “
Isothermal Fatigue of Interconnections in Flexible Hybrid Electronics Based Human Performance Monitors
,”
Proceedings of the Electronic Components and Technology Conference
, San Diego, CA, May 29–June 1, pp.
896
903
.10.1109/ECTC.2018.00138
7.
Lall
,
P.
,
Kothari
,
N.
,
Abrol
,
A.
,
Ahmed
,
S.
,
Suhling
,
J.
,
Leever
,
B.
, and
Miller
,
S.
,
2019
, “
Effect of Sintering Time and Sintering Temperature on the Mechanical and Electrical Properties of Aerosol-Jet Additively Printed Electronics
,” 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 28–31, pp.
956
964
.10.1109/ITHERM.2019.8757338
8.
Borgesen
,
P.
,
Wentlent
,
L.
,
Alghoul
,
T.
,
Sivasubramony
,
R.
,
Yadav
,
M.
,
Thekkut
,
S.
,
Cuevas
,
J. L. T.
, and
Greene
,
C.
,
2019
, “
A Mechanistic Model of Damage Evolution in Lead Free Solder Joints Under Combinations of Vibration and Thermal Cycling With Varying Amplitudes
,”
Microelectron. Reliab.
,
95
, pp.
65
73
.10.1016/j.microrel.2019.02.001
9.
Borgesen
,
P.
,
Wentlent
,
L.
,
Hamasha
,
S.
,
Khasawneh
,
S.
,
Shirazi
,
S.
,
Schmitz
,
D.
,
Alghoul
,
T.
,
Greene
,
C.
, and
Yin
,
L.
,
2018
, “
A Mechanistic Thermal Fatigue Model for SnAgCu Solder Joints
,”
J. Electron. Mater.
,
47
(
5
), pp.
2526
2544
.10.1007/s11664-018-6121-0
10.
Morris
,
J. E.
,
2018
, “
Nanopackaging: Nanotechnologies and Electronics Packaging
,”
Nanopackaging: Nanotechnologies and Electronics Packaging
, 2nd ed.,
Springer
, Cham, Switzerland, pp.
1
44
.
11.
Zürcher
,
J.
,
Yu
,
K.
,
Schlottig
,
G.
,
Baum
,
M.
,
Taklo
,
M. M. V.
,
Wunderle
,
B.
,
Warszyński
,
P.
, and
Brunschwiler
,
T.
,
2015
, “
Nanoparticle Assembly and Sintering Towards All-Copper Flip Chip Interconnects
,” 2015 IEEE 65th Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 26–29, pp.
1115
1121
. 10.1109/ECTC.2015.7159734
12.
Suzuki
,
T.
,
Yasuda
,
Y.
,
Terasaki
,
T.
,
Morita
,
T.
,
Kawana
,
Y.
,
Ishikawa
,
D.
,
Nishimura
,
M.
,
Nakako
,
H.
, and
Kurafuchi
,
K.
,
2018
, “
Macro-and Micro-Deformation Behavior of Sintered-Copper Die-Attach Material
,”
IEEE Trans. Device Mater. Reliab.
,
18
(
1
), pp.
54
63
.10.1109/TDMR.2017.2787756
13.
Suzuki
,
T.
,
Yasuda
,
Y.
,
Terasaki
,
T.
,
Morita
,
T.
,
Kawana
,
Y.
,
Ishikawa
,
D.
,
Nishimura
,
M.
,
Nakako
,
H.
,
Kurafuchi
,
K.
, and
Matsuda
,
T.
,
2019
, “
Tensile-Fatigue Behavior of Sintered Copper Die-Attach Material
,”
IEEE Trans. Device Mater. Reliab.
,
19
(
2
), pp.
461
467
.10.1109/TDMR.2019.2916784
14.
Ishikawa
,
D.
,
An
,
B. N.
,
Mail
,
M.
,
Wurst
,
H.
,
Leyrer
,
B.
,
Blank
,
T.
,
Weber
,
M.
,
Ueda
,
S.
,
Nakako
,
H.
, and
Kawana
,
Y.
,
2019
, “
Analysis of Bonding Interfaces of Pressureless-Sintered Cu on Metallization Layers
,” 2019 International Conference on Electronics Packaging (
ICEP
), Niigata, Japan, Apr. 17–20, pp.
167
172
.10.23919/ICEP.2019.8733521
15.
Kobayashi
,
Y.
,
Shirochi
,
T.
,
Yasuda
,
Y.
, and
Morita
,
T.
,
2012
, “
Metal-Metal Bonding Process Using Metallic Copper Nanoparticles Prepared in Aqueous Solution
,”
Int. J. Adhes. Adhes.
,
33
, pp.
50
55
.10.1016/j.ijadhadh.2011.11.002
16.
Carro
,
L. D.
,
Liu
,
C.
,
Koller
,
F.
,
Zinn
,
A. A.
,
Brunschwiler
,
T.
,
Carro
,
L. D.
,
Liu
,
C.
,
Koller
,
F.
,
Zinn
,
A. A.
, and
Brunschwiler
,
T.
,
2019
, “
Sintering of Oxide-Free Copper Pastes for the Attachment of SiC Power Devices
,” 2019 22nd European Microelectronics and Packaging Conference & Exhibition (
EMPC
), Vol.
48
, Pisa, Italy, Sept. 16–19, Springer, pp.
6823
6834
.10.23919/EMPC44848.2019.8951838
17.
Del Carro
,
L.
,
Zinn
,
A. A.
,
Ruch
,
P.
,
Bouville
,
F.
,
Studart
,
A. R.
, and
Brunschwiler
,
T.
,
2019
, “
Oxide-Free Copper Pastes for the Attachment of Large-Area Power Devices
,”
J. Electron. Mater.
,
48
(
10
), pp.
6823
6834
.10.1007/s11664-019-07452-8
18.
Ishizaki
,
T.
,
Miura
,
D.
,
Kuno
,
A.
,
Nagao
,
R.
,
Aoki
,
S.
,
Ohshima
,
Y.
,
Kino
,
T.
,
Usui
,
M.
, and
Yamada
,
Y.
,
2016
, “
Power Cycle Reliability of Cu Nanoparticle Joints With Mismatched Coefficients of Thermal Expansion
,”
Microelectron. Reliab.
,
64
, pp.
287
293
.10.1016/j.microrel.2016.07.031
19.
Ishizaki
,
T.
,
Miura
,
D.
,
Kuno
,
A.
,
Hasegawa
,
K.
,
Usui
,
M.
, and
Yamada
,
Y.
,
2017
, “
Young's Modulus of a Sintered Cu Joint and Its Influence on Thermal Stress
,”
Microelectron. Reliab.
,
76–77
, pp.
405
408
.10.1016/j.microrel.2017.06.015
20.
Yamada
,
Y.
,
Hasegawa
,
K.
,
Ikeda
,
Y.
,
Kasagi
,
Y.
,
Katagiri
,
K.
,
Katou
,
H.
,
Watanabe
,
H.
,
Takenaka
,
A.
,
Nagata
,
H.
,
Sekine
,
N.
, and
Sano
,
Y.
,
2019
, “
Reliability of Pressure-Free Cu Nanoparticle Joints for Power Electronic Devices
,”
Microelectron. Reliab.
,
100–101
, p.
113316
.10.1016/j.microrel.2019.06.008
21.
Ishizaki
,
T.
,
Satoh
,
T.
,
Kuno
,
A.
,
Tane
,
A.
,
Yanase
,
M.
,
Osawa
,
F.
, and
Yamada
,
Y.
,
2013
, “
Thermal Characterizations of Cu Nanoparticle Joints for Power Semiconductor Devices
,”
Microelectron. Reliab.
,
53
(
9–11
), pp.
1543
1547
.10.1016/j.microrel.2013.07.042
22.
Ishizaki
,
T.
,
Akedo
,
K.
,
Satoh
,
T.
, and
Watanabe
,
R.
,
2014
, “
Pressure-Free Bonding of Metallic Plates With Ni Affinity Layers Using Cu Nanoparticles
,”
J. Electron. Mater.
,
43
(
3
), pp.
774
779
.10.1007/s11664-013-2953-9
23.
Ishizaki
,
T.
, and
Watanabe
,
R.
,
2012
, “
A New One-Pot Method for the Synthesis of Cu Nanoparticles for Low Temperature Bonding
,”
J. Mater. Chem.
,
22
(
48
), pp.
25198
25206
.10.1039/c2jm34954j
24.
Zhao
,
J.
,
Yao
,
M.
, and
Lee
,
N. C.
,
2018
, “
Nano-Cu Sintering Paste for High Power Devices Die Attach Applications
,”
Proceedings of the Electronic Components and Technology Conference
, Taipei, Taiwan, Oct. 25–27, pp.
557
563
.10.1109/IMPACT.2017.8255962
25.
Usui
,
M.
,
Kimura
,
H.
,
Satoh
,
T.
,
Asada
,
T.
,
Yamaguchi
,
S.
, and
Kato
,
M.
,
2016
, “
Degradation of a Sintered Cu Nanoparticle Layer Studied by Synchrotron Radiation Computed Laminography
,”
Microelectron. Reliab.
,
63
, pp.
152
158
.10.1016/j.microrel.2016.06.011
26.
Lee
,
B. H.
,
Ng
,
M. Z.
,
Zinn
,
A. A.
, and
Gan
,
C. L.
,
2015
, “
Application of Copper Nanoparticles as Die Attachment for High Power LED
,” 2015 IEEE 17th Electronics Packaging and Technology Conference (
EPTC
), Singapore, Dec. 2–4, pp.
1
5
.10.1109/EPTC.2015.7412383
27.
Lee
,
B. H.
,
Ng
,
M. Z.
,
Zinn
,
A. A.
, and
Gan
,
C. L.
,
2015
, “
Evaluation of Copper Nanoparticles for Low Temperature Bonded Interconnections
,”
2015 IEEE 22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits
, Hsinchu, Taiwan, June 29–July 2, pp.
102
106
.10.1109/IPFA.2015.7224343
28.
Kim
,
J.
,
Lee
,
B.
,
Koo
,
J.-M.
, and
Gan
,
C. L.
,
2017
, “
Copper Nanoparticle Paste on Different Metallic Substrates for Low Temperature Bonded Interconnection
,” 2017 IEEE 19th Electronics Packaging Technology Conference (
EPTC
), Singapore, Dec. 6–9, pp.
1
4
. 10.1109/EPTC.2017.8277556
29.
Dai
,
Y. Y.
,
Ng
,
M. Z.
,
Anantha
,
P.
,
Lin
,
Y. D.
,
Li
,
Z. G.
,
Gan
,
C. L.
, and
Tan
,
C. S.
,
2016
, “
Enhanced Copper Micro/Nano-Particle Mixed Paste Sintered at Low Temperature for 3D Interconnects
,”
Appl. Phys. Lett.
,
108
(
26
), p.
263103
.10.1063/1.4954966
30.
Ishizaki
,
T.
,
Usui
,
M.
, and
Yamada
,
Y.
,
2015
, “
Thermal Cycle Reliability of Cu-Nanoparticle Joint
,”
Microelectron. Reliab.
,
55
(
9–10
), pp.
1861
1866
.10.1016/j.microrel.2015.07.039
31.
Yamakawa
,
T.
,
Takemoto
,
T.
,
Shimoda
,
M.
,
Nishikawa
,
H.
,
Shiokawa
,
K.
, and
Terada
,
N.
,
2013
, “
Influence of Joining Conditions on Bonding Strength of Joints: Efficacy of Low-Temperature Bonding Using Cu Nanoparticle Paste
,”
J. Electron. Mater.
,
42
(
6
), pp.
1260
1267
.10.1007/s11664-013-2583-2
32.
Del Carro
,
L.
,
Kossatz
,
M.
,
Schnackenberg
,
L.
,
Fettke
,
M.
,
Clark
,
I.
, and
Brunschwiler
,
T.
,
2018
, “
Laser Sintering of Dip-Based All-Copper Interconnects
,” 2018 IEEE 68th Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 29–June 1, pp.
279
286
. https://www.ectc.net/files/68/2018-Outstanding-Session-Paper.pdf
33.
Yoon
,
J.-W.
, and
Back
,
J.-H.
,
2018
, “
Effect of Sintering Conditions on the Mechanical Strength of Cu-Sintered Joints for High-Power Applications
,”
Materials (Basel)
,
11
(
11
), p.
2105
.10.3390/ma11112105
34.
Nishikawa
,
H.
,
Hirano
,
T.
,
Takemoto
,
T.
, and
Terada
,
N.
,
2011
, “
Effects of Joining Conditions on Joint Strength of Cu/Cu Joint Using Cu Nanoparticle Paste
,”
Open Surf. Sci. J.
,
3
, pp.
60
64
.10.2174/1876531901103010060
35.
Nishikawa
,
H.
,
Hirano
,
T.
, and
Takemoto
,
T.
,
2011
, “
Bonding Process of Cu/Cu Joint Using Cu Nanoparticle Paste
,”
Trans. JWRI
,
40
(
2
), pp.
33
36
.https://ir.library.osaka-u.ac.jp/repo/ouka/all/5952/jwri40_02_033.pdf
36.
Ishikawa
,
D.
,
Nakako
,
H.
,
Kawana
,
Y.
,
Sugama
,
C.
,
Negishi
,
M.
,
Ejiri
,
Y.
,
Ueda
,
S.
,
An
,
B. N.
,
Wurst
,
H.
, and
Leyrer
,
B.
,
2018
, “
Copper Die-Bonding Sinter Paste: Sintering and Bonding Properties
,” 2018 Seventh Electronic System-Integration Technology Conference (
ESTC
), Dresden, Germany, Sept. 18–21, pp.
1
10
.10.1109/ESTC.2018.8546455
37.
Hamasha
,
S.
, and
Borgesen
,
P.
,
2016
, “
Effects of Strain Rate and Amplitude Variations on Solder Joint Fatigue Life in Isothermal Cycling
,”
ASME J. Electron. Packag.
,
138
(
2
), p. 0
21002
.10.1115/1.4032881
38.
Li
,
J. C. M.
,
2002
, “
Impression Creep and Other Localized Tests
,”
Mater. Sci. Eng. A
,
322
(
1–2
), pp.
23
42
.10.1016/S0921-5093(01)01116-9
39.
Kokash
,
M. Z.
,
Sivasubramony
,
R. S.
,
Cuevas
,
J. L. T.
,
Zamudio
,
A. F.
,
Borgesen
,
P.
,
Zinn
,
A. A.
,
Stoltenberg
,
R. M.
,
Chang
,
J.
,
Tseng
,
Y. L.
, and
Blass
,
D.
,
2017
, “
Assessing the Reliability of High Temperature Solder Alternatives
,”
Proceedings of the Electronic Components and Technology Conference
, Orlando, FL, May 30–June 2, pp.
1987
1995
.10.1109/ECTC.2017.88
40.
White
,
B.
,
2017
, personal communication.
41.
Thekkut
,
S.
,
Kokash
,
M. Z.
,
Sivasubramony
,
R. S.
,
Thompson
,
P.
,
Shahane
,
N.
,
Mirpuri
,
K.
,
Kawana
,
Y.
,
Greene
,
C. M.
, and
Borgesen
,
P.
, “
Inelastic Deformation of Copper Nanoparticle Based Joints and Bonds
,” epub.
42.
Kuo
,
C. M.
, and
Lin
,
C. S.
,
2007
, “
Static Recovery Activation Energy of Pure Copper at Room Temperature
,”
Scr. Mater.
,
57
(
8
), pp.
667
670
.10.1016/j.scriptamat.2007.06.054
43.
Chokshi
,
A. H.
,
Rosen
,
A.
,
Karch
,
J.
, and
Gleiter
,
H.
,
1989
, “
On the Validity of the Hall-Petch Relationship in Nanocrystalline Materials
,”
Scr. Metall.
,
23
(
10
), pp.
1679
1683
.10.1016/0036-9748(89)90342-6
44.
Wentlent
,
L.
,
Schnabl
,
K.
,
Khasawneh
,
S.
,
Mootoo
,
K.
,
Owens
,
J.
,
Zinn
,
A. A.
,
Beddow
,
J.
,
Hauptfleisch
,
E.
,
Blass
,
D.
, and
Borgesen
,
P.
,
2013
, “
Nanocopper as a Replacement for Solder—A Question of Reliability?
,”
Proceeding of SMTAI
, Fort Worth, TX, Oct.
13
17
.
45.
Kreuzeder
,
M.
,
Abad
,
M. D.
,
Primorac
,
M. M.
,
Hosemann
,
P.
,
Maier
,
V.
, and
Kiener
,
D.
,
2015
, “
Fabrication and Thermo-Mechanical Behavior of Ultra-Fine Porous Copper
,”
J. Mater. Sci.
,
50
(
2
), pp.
634
643
.10.1007/s10853-014-8622-4
46.
Kokash
,
M. Z.
,
2019
, “Assessing the Reliability of Fused/Sintered Nano-Particles,”
Doctoral dissertation
, State University of New York at Binghamton, Binghamton, NY.https://search.proquest.com/openview/d56408dd2ee4d8b5061ae3b28096def1/1?pq-origsite=gscholar&cbl=18750&diss=y
47.
Nieh
,
T. G.
, and
Nix
,
W. D.
,
1981
, “
Embrittlement of Copper Due to Segregation of Oxygen to Grain Boundaries
,”
Metall. Trans. A
,
12
(
5
), pp.
893
901
.10.1007/BF02648354
48.
Hakamada
,
M.
, and
Mabuchi
,
M.
,
2009
, “
Thermal Coarsening of Nanoporous Gold: Melting or Recrystallization
,”
J. Mater. Res.
,
24
(
2
), pp.
301
304
.10.1557/JMR.2009.0037
49.
Sivasubramony
,
R. S.
,
Alhendi
,
M.
,
Kokash
,
M. Z.
,
Yadav
,
M.
,
Raj
,
A.
,
Thekkut
,
S.
,
Enakerakpo
,
E.
,
Adams
,
N.
,
Borgesen
,
P.
, and
Poliks
,
M. D.
,
2020
, “
Damage Accumulation in Printed Interconnects on Flex Under Combinations of Bending and Tension With Different Amplitudes
,”
Proceedings of the Electronic Components and Technology Conference
, Orlando, FL, June 3–30, pp.
1225
1233
. 10.1109/ECTC32862.2020.00196
50.
Hamasha
,
S.
,
Akkara
,
F.
,
Su
,
S.
,
Ali
,
H.
, and
Borgesen
,
P.
,
2018
, “
Effect of Cycling Amplitude Variations on SnAgCu Solder Joint Fatigue Life
,”
IEEE Trans. Compon., Packag., Manuf. Technol
,
8
(
11
), pp.
1896
1904
.10.1109/TCPMT.2018.2795347
51.
Wentlent
,
L.
,
Alghoul
,
T. M.
,
Greene
,
C. M.
, and
Borgesen
,
P.
,
2018
, “
Effects of Amplitude Variations on Deformation and Damage Evolution in SnAgCu Solder in Isothermal Cycling
,”
J. Electron. Mater.
,
47
(
5
), pp.
2752
2760
.10.1007/s11664-018-6129-5
52.
Watson
,
D. B.
,
2016
, “On the Transition of Polycrystalline Copper From Dislocation to Diffusion Dominated Creep,”
Master's thesis
, State University of New York at Binghamton, Binghamton, NY.https://search.proquest.com/openview/25407dfa8351619e8fd4f46d43f28515/1?pq-origsite=gscholar&cbl=18750&diss=y
53.
Borgesen
,
P.
,
Jiang
,
J.
,
Sivasubramony
,
R.
,
Alvarez
,
L. E.
,
Alghoul
,
T.
, and
Greene
,
C.
,
2017
, “
Thermal Cycling—It Doesn't Have to Be a Waste of Time and Money
,”
Proceedings of SMTAI
, Rosemont, IL, Sept. 17–21, p.
370
.
You do not currently have access to this content.