Abstract

Silicon piezoresistive pressure sensors can only operate below 125 °C due to the leakage current of the PN junction. However, silicon-on-insulator (SOI) high-temperature pressure sensors use SiO2 for total dielectric isolation to solve this problem. At present, SOI high-temperature pressure sensors mostly use lead bonding package structure, with gold wire to lead the electrical signal and silicone oil as the protection medium, but the working temperature of silicone oil is limited to about 150 °C. In this paper, the leadless package structure is designed using pressure conduction on the backside of the chip and replacing the gold wire with sintered silver paste. The materials and dimensions of the leadless package structure are determined and then obtained a complete package structure through manufacturing. The reliability of the leadless package structure after silver paste sintering was verified by finite element analysis, and the results showed that the thermal stress caused by high and low-temperature cycles in the leadless package is minimal and does not affect the sensitivity of the pressure-sensitive chip. The size of the leadless package structure was optimized by Taguchi orthogonal method, and the maximum thermal stress was effectively reduced. Also, the key factors affecting the thermal stress of the leadless package in the package structure were identified by the variance number analysis method. The optimized leadless package structure size was remanufactured, and the sintered package structure was tested. The data show that the sensitivity of the pressure sensor is 30.82 mV/MPa with a nonlinearity of less than 0.4% full-scale (FS).

References

1.
R.
,
Singh
,
L.
,
Ngo
,
H.
,
Seng
,
F.
, and
Mok
,
A.
,
2002
, “A
Silicon Piezoresistive Pressure Sensor
,”
Proceedings First IEEE International Workshop on Electronic Design, Test and Applications
, Christchurch, New Zealand, Jan. 29–31, pp.
181
184
.10.1109/DELTA.2002.994611
2.
Partridge
,
A.
,
Reynolds
,
J. K.
,
Chui
,
B. W.
,
Chow
,
E. M.
,
Fitzgerald
,
A. M.
,
Zhang
,
L.
,
Maluf
,
N. I.
, and
Kenny
,
T. W.
,
2000
, “
A High-Performance Planar Piezoresistive Accelerometer
,”
J. Microelectromech. Syst.
,
9
(
1
), pp.
58
66
.10.1109/84.825778
3.
Chaehoi
,
A.
,
Latorre
,
L.
,
Nouet
,
P.
, and
Baglio
,
S.
,
2003
, “
Piezoresistive CMOS Beams for Inertial Sensing
,”
Proceedings of the IEEE Sensors
, Vols. 1 and 2, Toronto, ON, Canada, Oct. 22–24, pp.
451
456
.10.1109/ICSENS.2003.1278978
4.
Smith
,
C. S.
,
1954
, “
Piezoresistance Effect in Germanium and Silicon
,”
Phys. Rev.
,
94
(
1
), pp.
42
49
.10.1103/PhysRev.94.42
5.
Kumar
,
S. S.
, and
Pant
,
B. D.
,
2014
, “
Design Principles and Considerations for the ‘Ideal’ Silicon Piezoresistive Pressure Sensor: A Focused Review (Vol 20, pg 1213, 2014)
,”
Microsyst. Technol.-Micro- Nanosyst. Inf. Storage Process. Syst.
,
20
(
12
), pp.
2303
2303
.10.1007/s00542-014-2215-7
6.
Li
,
X.
,
Liu
,
Q.
,
Pang
,
S.
,
Xu
,
K.
,
Tang
,
H.
, and
Sun
,
C.
,
2012
, “
High-Temperature Piezoresistive Pressure Sensor Based on Implantation of Oxygen Into Silicon Wafer
,”
Sens. Actuators A-Phys.
,
179
, pp.
277
282
.10.1016/j.sna.2012.03.027
7.
Bogaerts
,
W.
,
Baets
,
R.
,
Dumon
,
P.
,
Wiaux
,
V.
,
Beckx
,
S.
,
Taillaert
,
D.
,
Luyssaert
,
B.
,
Van Campenhout
,
J.
,
Bienstman
,
P.
, and
Van Thourhout
,
D.
,
2005
, “
Nanophotonic Waveguides in Silicon-on-Insulator Fabricated With CMOS Technology
,”
J. Lightwave Technol.
,
23
(
1
), pp.
401
412
.10.1109/JLT.2004.834471
8.
Ha-Duong
,
N.
,
Mukhopadhyay
,
B.
,
Vu Cong
,
T.
,
Mackowiak
,
P.
,
Schlichting
,
V.
,
Obermeier
,
E.
,
Lang
,
K.-D.
,
Giuliani
,
A.
,
Drera
,
L.
, and
Arancio
,
D.
,
2012
, “
Liquid-Free, Piezoresistive, SOI-Based Pressure Sensor for High Temperature Measurements Up to 400 Degrees C
,”
IEEE Sensors Proceedings
, Taipei, Taiwan, Oct. 28–31, pp.
958
961
.10.1109/ICSENS.2012.6411031
9.
Guo
,
S.
,
Eriksen
,
H.
,
Childress
,
K.
,
Fink
,
A.
, and
Hoffman
,
M.
,
2008
, “
High Temperature High Accuracy Piezoresistive Pressure Sensor Based on Smart-Cut SOI, Mems 2008
,”
21st IEEE International Conference on Micro Electro Mechanical Systems
, Technical Digest, Tucson, AZ, pp.
892
895
.10.1109/MEMSYS.2008.4443800
10.
Suski
,
J.
,
Mosser
,
V.
, and
Goss
,
J.
,
1989
, “
Polysilicon SOI Pressure Sensor
,”
Sens. Actuators
,
17
(
3–4
), pp.
405
414
.10.1016/0250-6874(89)80027-7
11.
Xu
,
H.
,
Qin
,
H.
,
Clauberg
,
H.
,
Chylak
,
B.
, and
Acoff
,
V. L.
,
2013
, “
Behavior of Palladium and Its Impact on Intermetallic Growth in Palladium-Coated Cu Wire Bonding
,”
Acta Mater.
,
61
(
1
), pp.
79
88
.10.1016/j.actamat.2012.09.030
12.
Niu
,
Z.
,
Zhao
,
Y.
, and
Tian
,
B.
,
2014
, “
Design Optimization of High Pressure and High Temperature Piezoresistive Pressure Sensor for High Sensitivity
,”
Rev. Sci. Instrum.
,
85
(
1
), p.
015001
.10.1063/1.4856455
13.
Chen
,
Y.
, and
Wang
,
F.
,
2015
, “
Comparison of Fundamental Frequency and Sweep Resistance of Different Wire Loops Using Finite Element Model
,”
Int. J. Struct. Stabil. Dyn.
,
15
(
01
), p.
1450032
.10.1142/S0219455414500321
14.
Bhat
,
K. N.
, and
Nayak
,
M. M.
,
2013
, “
MEMS Pressure Sensors-an Overview of Challenges in Technology and Packaging
,”
J. Smart Struct., Syst.
,
2
, pp.
1
10
.https://www.semanticscholar.org/paper/MEMS-Pressure-Sensors-An-Overview-of-Challenges-in-Bhat-Nayak/b3ab9fd4fcae88c557c7d7ccd7e26472a50c4b60
15.
Song
,
P.
,
Ma
,
Z.
,
Ma
,
J.
,
Yang
,
L.
,
Wei
,
J.
,
Zhao
,
Y.
,
Zhang
,
M.
,
Yang
,
F.
, and
Wang
,
X.
,
2020
, “
Recent Progress of Miniature MEMS Pressure Sensors
,”
Micromachines
,
11
(
1
), p.
56
.10.3390/mi11010056
16.
von Berg
,
J.
,
Cavalloni
,
C.
,
Mukhopadhyay
,
B.
,
Mackowiak
,
P.
,
Ehrmann
,
O.
,
Lang
,
K.-D.
, and
Ha-Duong
,
N.
,
2013
, “
An Advanced MEMS Sensor Packaging Concept for Use in Harsh Environments
,” IEEE 15th Electronics Packaging Technology Conference (
EPTC 2013
), Singapore, Dec. 11–13, pp.
98
102
.10.1109/EPTC.2013.6745692
17.
Tan
,
Q.
,
Li
,
C.
,
Xiong
,
J.
,
Jia
,
P.
,
Zhang
,
W.
,
Liu
,
J.
,
Xue
,
C.
,
Hong
,
Y.
,
Ren
,
Z.
, and
Luo
,
T.
,
2014
, “
A High Temperature Capacitive Pressure Sensor Based on Alumina Ceramic for In Situ Measurement at 600 C
,”
Sensors
,
14
(
2
), pp.
2417
2430
.10.3390/s140202417
18.
Chen
,
Y.
,
Kuang
,
Y.
,
Shi
,
D.
,
Hou
,
M.
,
Chen
,
X.
,
Jiang
,
L.
,
Gao
,
J.
,
Zhang
,
L.
,
He
,
Y.
, and
Wong
,
C.-P.
,
2020
, “
A Triboelectric Nanogenerator Design for Harvesting Environmental Mechanical Energy From Water Mist
,”
Nano Energy
,
73
, p.
104765
.10.1016/j.nanoen.2020.104765
19.
Kim
,
S. I.
,
Leel
,
J. Y.
,
Kim
,
Y. K.
,
Hong
,
J. P.
,
Hur
,
Y.
, and
Jung
,
Y. H.
,
2005
, “
Optimization for Reduction of Torque Ripple in Interior Permanent Magnet Motor by Using the Taguchi Method
,”
IEEE Trans. Magnet.
,
41
(
5
), pp.
1796
1799
.
20.
Nalbant
,
M.
,
Gokkaya
,
H.
, and
Sur
,
G.
,
2007
, “
Application of Taguchi Method in the Optimization of Cutting Parameters for Surface Roughness in Turning
,”
Mater. Des.
,
28
(
4
), pp.
1379
1385
.10.1016/j.matdes.2006.01.008
21.
Hsieh
,
H.-S.
,
Chang
,
H.-C.
,
Hu
,
C.-F.
,
Hsu
,
C.-P.
, and
Fang
,
W.
,
2010
, “
Method for Sensitivity Improvement and Optimal Design of a Piezoresistive Pressure Sensor
,”
IEEE Sensors
, Waikoloa, HI, Nov. 1–4, pp.
1799
1802
.10.1109/ICSENS.2010.5689986
22.
Hwang
,
C.-C.
,
Lyu
,
L.-Y.
,
Liu
,
C.-T.
, and
Li
,
P.-L.
,
2008
, “
Optimal Design of an SPM Motor Using Genetic Algorithms and Taguchi Method
,”
IEEE Trans. Magnet.
,
44
(
11
), pp.
4325
4328
.10.1109/TMAG.2008.2001526
23.
Cui
,
W. P.
,
Liu
,
G. D.
,
Zhang
,
F. S.
,
Hu
,
H.
,
Gao
,
C. C.
, and
Hao
,
Y. L.
,
2015
, “
Silicon-Silicon Anodic Bonding Process With Embedded Glass
,”
IEEE 10th International Conference on Nano/Micro Engineered and Molecular Systems
, Xi'an, China, Apr. 7–11, pp.
470
475
.10.1109/NEMS.2015.7147470
24.
Tang
,
J.
,
Cai
,
C.
,
Ming
,
X.
,
Yu
,
X.
,
Zhao
,
S.
,
Tu
,
S.-T.
, and
Liu
,
H.
,
2016
, “
Morphology, and Stress at Silicon-Glass Interface in Anodic Bonding
,”
Appl. Surf. Sci.
,
387
, pp.
139
148
.10.1016/j.apsusc.2016.06.076
25.
Kim
,
S. C.
, and
Wise
,
K. D.
,
1983
, “
Temperature Sensitivity in Silicon Piezoresistive Pressure Transducers
,”
IEEE Trans. Electron Dev.
,
30
(
7
), pp.
802
810
.
26.
Tian
,
B.
,
Zhao
,
Y.
,
Jiang
,
Z.
,
Ling
,
Z.
, and
Chao
,
M.
,
2009
, “
The Analysis and Structural Design of Micro SOI Pressure Sensors
,”
Fourth IEEE International Conference on Nano/Micro Engineered and Molecular Systems
,
IEEE
, Shenzhen, China, Jan. 5–8, pp.
55
58
.10.1109/NEMS.2009.5068526
27.
Xie
,
X.
,
Zhang
,
J.
,
Li
,
M.
,
Liu
,
Q.
, and
Mao
,
X.
,
2021
, “
Design and Fabrication of Temperature-Insensitive MEMS Pressure Sensor Utilizing Aluminum-Silicon Hybrid Structures
,”
IEEE Sens. J.
,
21
(
5
), pp.
5861
5870
.10.1109/JSEN.2020.3040742
28.
Chern
,
T.-S.
, and
Tsai
,
H.-L.
,
2007
, “
Wetting and Sealing of Interface Between 7056 Glass and Kovar Alloy
,”
Mater. Chem. Phys.
,
104
(
2–3
), pp.
472
478
.10.1016/j.matchemphys.2007.04.012
29.
Chanmuang
,
C.
,
Naksata
,
M.
,
Chairuangsri
,
T.
,
Jain
,
H.
, and
Lyman
,
C. E.
,
2008
, “
Microscopy, and Strength of Borosilicate Glass-to-Kovar Alloy Joints
,”
Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
,
474
(
1–2
), pp.
218
224
.10.1016/j.msea.2007.04.016
30.
Yu
,
D-J.
,
Chen
,
X.
,
Chen
,
G.
,
Lu
,
G-Q.
, and
Wang
,
Z-Q.
,
2009
, “
Applying Anand Model to Low-Temperature Sintered Nanoscale Silver Paste Chip Attachment
,”
Mater. Des.
,
30
(
10
), pp.
4574
4579
.10.1016/j.matdes.2009.04.006
31.
Brown
,
S. B.
,
Kim
,
K. H.
, and
Anand
,
L.
,
1989
, “
An Internal Variable Constitutive Model for Hot Working of Metals
,”
Int. J. Plasticity
,
5
(
2
), pp.
95
130
.10.1016/0749-6419(89)90025-9
32.
Hong
,
V. A.
,
Yoneoka
,
S.
,
Messana
,
M. W.
, and
Graham
,
A.
,
2012
, “
High-Stress Fatigue Experiments on Single Crystal Silicon in an Oxygen-Free Environment
,”
Proceedings of Solid-State Sensors, Actuators, Microsystems Workshop
, Hilton Head Island, SC, June 3–7, pp.
271
274
.http://micromachine.stanford.edu/publications/126_Hong_2012.pdf
You do not currently have access to this content.