Abstract

Increasing heat flux in power electronics modules is taxing the limits of thermal management technologies. This is the result of wide bandgap semiconductor devices with superior voltage blocking capabilities. These same devices have the capability of operating at elevated junction temperatures when properly packaged. Transient liquid phase (TLP) bonding forms intermetallic compounds (IMC) with high melting temperatures at more conventional processing temperatures. Copper and tin transient liquid phase intermetallic formation in SAC305 solder bonds can be accelerated using copper nanowires. This work explores the feasibility of accelerated transient liquid phase bonding using solder and nanowires. This includes electroforming of nanowires, contact angle analysis of solder on nanowires, void analysis using scanning acoustic microscopy (SAM), and cross-sectional scanning electron microscopy (SEM). SAC305 solder is deposited on substrates with 0.4 μm diameter copper nanowires using a 75 μm stencil and subjected to solder reflow. It is found that atmospheric storage at 260 °C results in regions of complete intermetallic bonding after 2 h. Shear strength of bonds completed with this nanowire transient liquid phase bonding method averages 11.99 kg or 13 MPa.

References

1.
Zhang
,
Y.
,
Tang
,
M.
,
Song
,
Q.
,
Tang
,
X.
,
Lv
,
H.
, and
Liu
,
S.
,
2016
, “
High Temperature Characterization of Normally-on 4H-SiC Junction Field-Effect Transistor
,”
Superlattices Microstruct.
,
99
, pp.
113
117
.10.1016/j.spmi.2016.04.001
2.
Sheng
,
K.
,
2009
, “
Maximum Junction Temperatures of SiC Power Devices
,”
IEEE Trans. Electron Devices
,
56
(
2
), pp.
337
342
.10.1109/TED.2008.2010605
3.
Collins
,
M. N.
,
Punch
,
J.
, and
Coyle
,
R.
,
2012
, “
Surface Finish Effect on Reliability of SAC305 Soldered Chip Resistors
,”
Soldering Surf. Mount Technol.
,
24
(
4
), pp.
240
248
.10.1108/09540911211262520
4.
Singh Nobeen
,
N.
,
Yan
,
G.
,
Gan
,
C. L.
, and
Chen
,
Z.
,
2020
, “
Ag–Sn Transient Liquid Phase Bonding for High Temperature Electronic Packaging: Effect of Ag Content
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
10
(
10
), pp.
1604
1610
.10.1109/TCPMT.2020.3009515
5.
Johnson
,
R. W.
,
Evans
,
J. L.
,
Jacobsen
,
P.
,
Thompson
,
J. R. R.
, and
Christopher
,
M.
,
2004
, “
The Changing Automotive Environment: High-Temperature Electronics
,”
IEEE Trans. Electron. Packag. Manuf.
,
27
(
3
), pp.
164
176
.10.1109/TEPM.2004.843109
6.
Li
,
M.
,
Xiao
,
Y.
,
Zhang
,
Z.
, and
Yu
,
J.
,
2015
, “
Bimodal Sintered Silver Nanoparticle Paste With Ultrahigh Thermal Conductivity and Shear Strength for High Temperature Thermal Interface Material Applications
,”
ACS Appl. Mater. Interfaces
,
7
(
17
), pp.
9157
9168
.10.1021/acsami.5b01341
7.
Long
,
X.
,
Hu
,
B.
,
Feng
,
Y.
,
Chang
,
C.
, and
Li
,
M.
,
2019
, “
Correlation of Microstructure and Constitutive Behaviour of Sintered Silver Particles Via Nanoindentation
,”
Int. J. Mech. Sci.
,
161–162
, p.
105020
.10.1016/j.ijmecsci.2019.105020
8.
Long
,
X.
,
Tang
,
W.
,
Feng
,
Y.
,
Chang
,
C.
,
Keer
,
L. M.
, and
Yao
,
Y.
,
2018
, “
Strain Rate Sensitivity of Sintered Silver Nanoparticles Using Rate-Jump Indentation
,”
Int. J. Mech. Sci.
,
140
, pp.
60
67
.10.1016/j.ijmecsci.2018.02.035
9.
MG Chemicals
,
2016
, “
Lead Free Solder Sn96 (SAC305) 4900 Technical Data Sheet
,” Version 2.00, MG Chemicals, Burlington, ON, Canada, accessed July 25, 2024, https://www.techsil.co.uk/media/pdf/TDS/MGEN00015-tds.pdf
10.
Greve
,
H.
,
2017
, “
Assessment of Properties of Transient Liquid Phase Sintered (TLPS) Interconnects by Simulation and Experiments
,”
Ph.D. dissertation
, University of Mayland, Department of Mechanical Engineering, Dr. Patrick McCluskey, College Park, MD.https://www.proquest.com/openview/a1511433dc4359c8da6e246a7081baed/1?pqorigsite=gscholar&cbl=18750
11.
Lee
,
B.-S.
,
Hyun
,
S.-K.
, and
Yoon
,
J.-W.
,
2017
, “
Cu–Sn and Ni–Sn Transient Liquid Phase Bonding for Die-Attach Technology Applications in High-Temperature Power Electronics Packaging
,”
J. Mater. Sci.: Mater. Electron.
,
28
(
11
), pp.
7827
7833
.10.1007/s10854-017-6479-4
12.
Wu
,
Z.-Y.
,
Wang
,
T.-C.
,
Wang
,
Y.-C.
,
Song
,
R.-W.
,
Tsai
,
S.-Y.
, and
Duh
,
J.-G.
,
2022
, “
Enhancing Mechanical Properties Via Adding Ni and Zn in Cu/Sn3.5Ag/Cu Transient Liquid Phase Bonding for Advanced Electronic Packaging
,”
J. Mater. Sci.: Mater. Electron.
,
33
(
6
), pp.
3016
3023
.10.1007/s10854-021-07501-1
13.
Sun
,
L.
,
Chen
,
M.
, and
Zhang
,
L.
,
2019
, “
Microstructure Evolution and Grain Orientation of IMC in Cu-Sn TLP Bonding Solder Joints
,”
J. Alloys Compd.
,
786
, pp.
677
687
.10.1016/j.jallcom.2019.01.384
14.
Liu
,
J.
,
Xiao
,
H.
,
Guo
,
X.
,
Wang
,
X.
,
Yao
,
Z.
,
Mao
,
X.
,
Liu
,
H.
, and
Chen
,
H.
,
2021
, “
A Novel Cu@Sn@Ag Core-Shell Particles for Die Attachment in Power Device Packaging
,” 22nd International Conference on Electronic Packaging Technology (
ICEPT
), Xiamen, China, Sept. 14–17, pp.
1
4
.10.1109/ICEPT52650.2021.9568006
15.
Greve
,
H.
, and
McCluskey
,
F. P.
,
2014
, “
LT-TLPS Die Attach for High Temperature Electronic Packaging
,”
J. Microelectron. Electron. Packag.
,
11
(
1
), pp.
7
15
.10.4071/imaps.394
16.
Peng
,
X.
,
Wang
,
Y.
,
Ye
,
Z.
,
Huang
,
J.
,
Yang
,
J.
,
Chen
,
S.
, and
Zhao
,
X.
,
2022
, “
Microstructural Evolution and Performance of High-Tin-Content Cu40Sn60 (wt.%) Core/Shell Powder TLPS Bonding Joints
,”
J. Manuf. Processes
,
75
, pp.
853
862
.10.1016/j.jmapro.2022.01.045
17.
Heo
,
M.-H.
,
Seo
,
Y.-J.
, and
Yoon
,
J.-W.
,
2023
, “
Novel and Fast Transient Liquid Phase Bonding Using Etched Cu Foam/Sn–3.0Ag–0.5Cu Composite Solder Preform
,”
Mater. Today Commun.
,
35
, p.
105730
.10.1016/j.mtcomm.2023.105730
18.
Shi
,
R.-Z.
,
Zhou
,
M.-B.
, and
Zhang
,
X.-P.
,
2022
, “
Novel Sn–Cu Based Composite Solder Preforms Capable of Low Temperature Reflow for Die Attachment of High Temperature Power Electronics and the Transient Liquid Phase Bonding Process
,” IEEE 72nd Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 31–June 3, pp.
2305
2310
.10.1109/ECTC51906.2022.00364
19.
Hwang
,
B.-U.
,
Min
,
K. D.
,
Jung
,
K.-H.
,
Lee
,
C.-J.
,
Kim
,
J.-H.
, and
Jung
,
S.-B.
,
2020
, “
Pressureless Transient Liquid Phase Sintering Bonding Using SAC305 With Hybrid Ag Particles for High–Temperature Packaging Applications
,” IEEE 70th Electronic Components and Technology Conference (
ECTC
), Orlando, FL, June 3–30, pp.
1855
1860
.10.1109/ECTC32862.2020.00290
20.
Barako
,
M. T.
,
Isaacson
,
S. G.
,
Lian
,
F.
,
Pop
,
E.
,
Dauskardt
,
R. H.
,
Goodson
,
K. E.
, and
Tice
,
J.
,
2017
, “
Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials
,”
ACS Appl. Mater. Interfaces
,
9
(
48
), pp.
42067
42074
.10.1021/acsami.7b12313
21.
Barako
,
M. T.
,
Roy-Panzer
,
S.
,
English
,
T. S.
,
Kodama
,
T.
,
Asheghi
,
M.
,
Kenny
,
T. W.
, and
Goodson
,
K. E.
,
2015
, “
Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites
,”
ACS Appl. Mater. Interfaces
,
7
(
34
), pp.
19251
19259
.10.1021/acsami.5b05147
22.
Sterlitech
,
2023
, “
Hydrophilic Polycarbonate Membranes
,” Sterlitech Corporation, Auburn, WA, accessed July 25, 2024, https://www.sterlitech.com/hydrophilic-polycarbonate-membrane-filters.html
23.
Buehler
,
2004
,
Buehler Sum-Met: The Science Behind Materials Preparation; a Guide to Materials Preparation and Analysis
,
Buehler
,
Lake Bluff, IL
.
24.
Ismail
,
N.
,
Ismail
,
R.
,
Nik Ubaidillah
,
N. K. A.
,
Jalar
,
A.
, and
Zain
,
N. M.
,
2016
, “
Surface Roughness and Wettability of SAC/CNT Lead Free Solder
,”
MSF
,
857
, pp.
73
75
.10.4028/www.scientific.net/MSF.857.73
25.
Su
,
H.-P.
,
Lee
,
C.-C.
, and
Horng
,
A.
,
2022
, “
High Throughput Void-Free Soldering With Pneumatic Reflow Method in Lead-Free Solder Die Attach
,” IEEE 72nd Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 31–June 3, pp.
2236
2243
.10.1109/ECTC51906.2022.00353
26.
Diehm
,
R.
,
Nowottnick
,
M.
, and
Pape
,
U.
,
2012
, “
Reduction of Voids in Solder Joints an Alternative to Vacuum Soldering
,” IPC APEX EXPO, San Diego, CA, accessed July 29, 2024, https://www.circuitinsight.com/pdf/reduction_voids_solder_joints_ipc.pdf
27.
Chiang
,
P.-C.
,
Shen
,
Y.-A.
, and
Chen
,
C.-M.
,
2021
, “
Effects of Impurities on Void Formation at the Interface Between Sn-3.0Ag-0.5Cu and Cu Electroplated Films
,”
J. Mater. Sci.: Mater. Electron.
,
32
(
9
), pp.
11944
11951
.10.1007/s10854-021-05824-7
28.
Motalab
,
M.
,
Jamil
,
M. F.
,
Al Mahmud Jony
,
M. S.
,
Bose
,
P.
, and
Suhling
,
J. C.
,
2021
, “
Insights Into the Mechanical Properties of SnAgCu Based Solder Materials Including Void Effects: An Atomistic Study
,”
20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)
, San Diego, CA, June 1–4, pp.
1250
1256
.10.1109/ITherm51669.2021.9503169
29.
USA Dept. of Defense
, 1996, “
MIL-STD-883 Method 2019.9 – Die Shear Strength
,” USA Dept. of Defense, Washington, DC, accessed July 25, 2024, https://www.xyztec.com/knowledgecenter/guidelines/mil-std-883-method-2019-9-die-shear-strength/
30.
Yee
,
S.
,
Wong
,
K.
, and
Issabayeva
,
G.
,
2019
, “
A Study on the Shear Strength and Failure Modes of Sn3.0Ag-0.5Cu Solder Joint Containing Pt
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
495
, p.
012085
.10.1088/1757-899X/495/1/012085
31.
Lee
,
D.
,
Jang
,
J.
, and
Kim
,
Y.-H.
,
2022
, “
Microstructure and Shear Strength of Au-20 wt% Sn Solder Joints Fabricated by Thermo-Compression Bonding for LED Packages
,”
J. Mater. Sci.: Mater. Electron.
,
33
(
14
), pp.
11002
11016
.10.1007/s10854-022-08079-y
You do not currently have access to this content.