A mathematical model for the drilling process is derived and solved numerically as an initial value problem. The equations of motion are nonlinear differential equations for longitudinal, lateral, and rotational motion of the pipe as well as for the rate of flow and pressure of the mud. The model comprises a mud (Moineau) motor which rotates the bit relative to the lower end of the pipe. The model accounts for buckling of the pipe due to excessive torque and longitudinal forces, as well as for the effect of hydraulic pressure on the deformed pipe. Weight on bit and torque on bit are computed from characteristic curves which are functions of the penetration of the bit into the rock and the angular velocity of the bit. Numerical simulations show self-excited oscillations of the drillstring, including bit take-off from the bottom hole and large amplitudes in the bit’s angular velocity. [S0195-0738(00)00602-6]

1.
Dufeyte, M. P., and Henneuse, H., 1991, “Detection and Monitoring of Stick-Slip Motion: Field Experiments,” SPE/IADC Drilling Conference, SPE/IADC 21945.
1.
Belokobyl’skii
,
S. V.
, and
Prokopov
,
V. K.
,
1983
, “
Friction-Induced Self-Excited Vibrations of Drill Rig with Exponential Drag Law
,”
Sov. Appl. Mech.
,
18
, No.
12
, pp.
1134
1138
;
2.
transl. from
Prikl. Mekh.
1982
,
18
, No.
12
, pp.
98
101
.
1.
Palmov
,
V. A.
,
Brommundt
,
E.
, and
Belyaev
,
A. K.
,
1995
, “
Stability Analysis of Drillstring Rotation
,”
Dynam. Stabil. Syst.
,
10
, No.
2
, pp.
99
110
.
2.
Dareing
,
D.
,
Tlusty
,
J.
, and
Zamudio
,
C.
,
1990
, “
Self-Excited Vibrations Induced by Drag Bits
,”
ASME J. Energy Resour. Technol.
,
112
, pp.
54
61
.
3.
Aarrestad
,
T. V.
, and
Kyllingstad
,
A˚.
,
1985
, “
An Experimental and Theoretical Study of a Coupling Mechanism Between Longitudinal and Torsional Drillstring Vibrations at the Bit
,”
SPE Drill. Eng.
, SPE 15563, pp.
12
18
.
4.
Heisig, G., 1993, “Zum statischen und dynamischen Verhalten von Tiefbohrstra¨ngen in ra¨umlich gekru¨mmten Bohrlo¨chern,” Braunsch. Schrift. Mech., 13, Mechanik-Zentrum der Technischen Universita¨t, Braunschweig, Germany.
5.
Dykstra, M. W., 1996, “Nonlinear Drillstring Dynamics,” Ph.D. thesis, The University of Tulsa, Tulsa, OK.
6.
Baumgart, A., and Brommundt, E., 1999, “Ein Modell fu¨r Bohrstrangschwingungen bei hydraulischer Bohrkraftsteuerung und Meißeldirektantrieb,” to appear in Z. Angew. Math. Mech.
7.
Antman, S. S., 1995, Nonlinear Problems of Elasticity, Applied Mathematical Sciences, Springer-Verlag, New York, NY.
8.
Washizu, K., 1982, Variational Methods in Elasticity and Plasticity, 3rd Edition, Pergamon Press, Oxford, UK.
9.
Schlo¨sser
,
W. M. J.
,
1967
, “ ‘
Stick-Slip’-Erscheinungen in Hydromotoren
,”
O¨lhydr. Pneumat.
,
11
, No.
10
, pp.
371
375
.
10.
Fletcher, C. A. J., 1984, Computational Galerkin Methods, Springer-Verlag, New York, NY.
11.
Baumgart, A., 1998, “Selbsterregte Schwingungen von Tiefbohrstra¨ngen - Die Wirkung von Untertage-Motor und Spu¨lflu¨ssigkeit,” Fortschr.-Ber. VDI, Reihe 6, 11, No. 271 VDI Verlag, Du¨sseldorf, Germany.
You do not currently have access to this content.