In this paper, a novel approach of middle-temperature solar hydrogen production using methanol steam reforming is proposed. It can be carried out at around 200300°C, much lower than the temperatures of other solar thermochemical hydrogen production. For the realization of the proposed solar hydrogen production, solar experiments are investigated in a modified 5 kW solar receiver/reactor with one-tracking parabolic trough concentrators. The feature of significantly upgrading the energy level from lower-grade solar thermal energy to higher-grade chemical energy is experimentally identified. The interaction between the hydrogen yield and the energy-level upgrade of solar thermal energy is clarified. Also, this kind of solar hydrogen production is experimentally compared with methanol decomposition. The preliminarily economic evaluation of the hydrogen production is identified. As a result, in the solar-driven steam reforming, the thermochemical efficiency of solar thermal energy converted into chemical energy reached up to 40–50% under a mean solar flux of 550700W/m2, and exceeding 90% of hydrogen production is achieved, with about 70% higher than that of methanol decomposition. The thermochemical performance of solar-driven methanol steam reforming experimentally examined at around 200300°C for hydrogen production may be competitive with conventional methane reforming. The promising results obtained here indicate that the proposed solar hydrogen production may provide the possibility of a synergetic process of both high production of hydrogen and effective utilization of solar thermal energy at around 200300°C.

1.
Fletcher
,
E. A.
, 2001, “
Solarthermal Processing: A Review
,”
ASME J. Sol. Energy Eng.
0199-6231,
123
, pp.
63
74
.
2.
Steinfeld
,
A.
, 2005, “
Solar Thermochemical Production of Hydrogen—A Review
,”
Sol. Energy
0038-092X,
78
, pp.
603
615
.
3.
Roeb
,
M.
,
Sattier
,
C.
,
Kiüser
,
R.
,
Monnerie
,
N.
,
Oliveira
,
L.
,
Konstandopoulos
,
A.
,
Agrafiotis
,
C.
,
Zaspalis
,
V. T.
,
Nalbandian
,
L.
, and
Steele
,
A.
, 2006, “
Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides
,”
ASME J. Sol. Energy Eng.
0199-6231,
128
, pp.
125
133
.
4.
Nakamura
,
T.
, 1977, “
Hydrogen Production From Water Utilizing Solar Heat at High Temperature
,”
Sol. Energy
0038-092X,
19
, pp.
467
475
.
5.
Steinfeld
,
A.
, 2002, “
Solar Hydrogen Production via a 2-Step Water-Splitting Thermochemical Cycle Based on Zn/ZnO Redox Reactions
,”
Int. J. Hydrogen Energy
0360-3199,
27
, pp.
611
619
.
6.
Weidenkaff
,
A.
,
Steinfeld
,
A.
,
Wokaun
,
A.
,
Eichler
,
B.
, and
Reller
,
A.
, 1999, “
The Direct Solar Thermal Dissociation of ZnO: Condensation and Crystallization of Zn in the Presence of Oxygen
,”
Sol. Energy
0038-092X,
65
, pp.
59
69
.
7.
Lundberg
,
M.
, 1993, “
Model Calculation on Some Feasible Two-Step Water Splitting Processes
,”
Int. J. Hydrogen Energy
0360-3199,
18
(
5
), pp.
369
376
.
8.
Kodama
,
T.
,
Nakamuro
,
Y.
, and
Mizuno
,
T.
, 2006, “
A Two-Step Thermochemical Water Splitting by Iron-Oxide on Stabilized Zirconia
,”
ASME J. Sol. Energy Eng.
0199-6231,
128
, pp.
3
7
.
9.
Tamaura
,
Y.
,
Hasegawa
,
N.
,
Kojima
,
M.
,
Ueda
,
Y.
,
Amano
,
H.
, and
Tsuji
,
M.
, 1998, “
Water Splitting With the MnII-Ferrite-CaO–H2O System at 1273K
,”
Energy
,
23
(
10
), pp.
879
886
. 0020-7020
10.
Inoue
,
M.
,
Hasegawa
,
N.
,
Uehara
,
R.
,
Gokon
,
N.
,
Kaneko
,
H.
, and
Tamaura
,
Y.
, 2004, “
Solar Hydrogen Generation With H2O/ZnO/MnFe3O4
,”
Sol. Energy
,
76
, pp.
309
315
. 0038-092X
11.
Steinfeld
,
A.
,
Frei
,
A.
,
Kuhn
,
P.
, and
Wuillemin
,
D.
, 1995, “
Solar Thermal Production of Zinc and Syngas via Combined ZnO-Reduction and CH4-Reforming Processes
,”
Int. J. Hydrogen Energy
0360-3199,
20
, pp.
793
804
.
12.
Kräupl
,
S.
, and
Steinfeld
,
A.
, 2001, “
Pulsed Gas Feeding for Stoichiometric Operation of a Gas-Solid Vortex Flow Solar Chemical Reactor
,”
ASME J. Sol. Energy Eng.
0199-6231,
123
, pp.
133
137
.
13.
Steinberg
,
M.
, 1999, “
Fossil Fuel Decarbonization Technology for Mitigating Global Warming
,”
Int. J. Hydrogen Energy
0360-3199,
24
, pp.
771
777
.
14.
Hirsch
,
D.
,
Epstein
,
M.
, and
Steinfeld
,
A.
, 2001, “
The Solar Thermal Decarbonization of Natural Gas
,”
Int. J. Hydrogen Energy
,
26
, pp.
1023
1033
. 0360-3199
15.
Zedtwitz
,
P.
, and
Steinfeld
,
A.
, 2003, “
The Solar Thermal Gasification of Coal-Energy Conversion Efficiency and CO2 Mitigation Potential
,”
Energy
0360-5442,
28
, pp.
441
456
.
16.
Möller
,
S.
,
Kaucic
,
D.
, and
Satter
,
C.
, 2006, “
Hydrogen Production by Solar Reforming of Natural Gas: A Comparison Study of Two Possible Process Configurations
,”
ASME J. Sol. Energy Eng.
0199-6231,
128
, pp.
16
23
.
17.
Hong
,
H.
,
Jin
,
H.
,
Ji
,
J.
,
Wang
,
Z.
, and
Cai
,
R.
, 2005, “
Solar Thermal Power Cycle With Integration of Methanol Decomposition and Middle-Temperature Solar Thermal Energy
,”
Sol. Energy
0038-092X,
78
, pp.
49
58
.
18.
Jin
,
H.
,
Sui
,
J.
,
Hong
,
H.
,
Wang
,
Z.
,
Zheng
,
D.
, and
Hou
,
Z.
, 2007, “
Prototype of Middle-Temperature Solar Receiver/Reactor With Parabolic Trough Concentrator
,”
ASME J. Sol. Energy Eng.
0199-6231,
129
, pp.
378
381
.
19.
Hou
,
Z.
,
Zheng
,
D.
,
Jin
,
H.
, and
Sui
,
J.
, 2007, “
Performance Analysis of Non-Isothermal Solar Reactor for Methanol Decomposition
,”
Sol. Energy
,
81
, pp.
415
423
. 0038-092X
20.
Hong
,
H.
,
Jin
,
H.
, and
Liu
,
B.
, 2006, “
A Novel Solar-Hybrid Gas Turbine Combined Cycle With Inherent CO2 Separation Using Chemical-Looping Combustion by Solar Heat Source
,”
ASME J. Sol. Energy Eng.
0199-6231,
128
, pp.
275
284
.
21.
Lindström
,
B.
, and
Pettersson
,
L. J.
, 2001, “
Hydrogen Generation by Steam Reforming of Methanol Over-Copper Based Catalysts for Fuel Cell Applications
,”
Int. J. Hydrogen Energy
,
26
, pp.
923
933
. 0360-3199
22.
Agrell
,
J.
,
Briegersson
,
H.
, and
Boutonnet
,
M.
, 2002, “
Steam Reforming of Methanol Over a Cu/ZnO/Al2O3 Catalyst: A Kinetic Analysis and Strategies for Suppression of CO Formation
,”
J. Power Sources
0378-7753,
106
, pp.
249
257
.
23.
Jin
,
H.
, and
Ishida
,
M.
, 2000, “
A Novel Gas Turbine Cycle With Hydrogen-Fueled Chemical-Looping Combustion
,”
Int. J. Hydrogen Energy
0360-3199,
25
, pp.
1209
1215
.
24.
Jin
,
H.
, and
Ishida
,
M.
, 2004, “
A New Type of Coal Gas Fueled Chemical Looping Combustion
,”
Fuel
0016-2361,
83
, pp.
2411
2417
.
25.
Spath
,
P. L.
, and
Amos
,
W. A.
, 2003, “
Using a Concentrating Solar Reactor to Produce Hydrogen and Carbon Black via Thermal Decomposition of Natural Gas: Feasibility and Economics
,”
ASME J. Sol. Energy Eng.
0199-6231,
125
, pp.
159
164
.
26.
Ishida
,
M.
, and
Kawamura
,
K.
, 1982, “
Energy and Exergy Analysis of a Chemical Process System With Distributed Parameters Based on the Energy-Direction Factor Diagram
,”
Ind. Eng. Chem. Process Des. Dev.
0196-4305,
21
, pp.
690
695
.
27.
Ishida
,
M.
, 2002,
Thermodynamic Made Comprehensible
,
Nova Science
,
New York
.
28.
Sargent & Lundy Counting Group, 2003, “
Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts
,” Prepared for Department of Energy National Renewable Energy Laboratory.
You do not currently have access to this content.