This paper presents a performance analysis of a supercritical organic Rankine cycle (SORC) with various working fluids with thermal energy provided from a geothermal energy source. In the present study, a number of pure fluids (R23, R32, R125, R143a, R134a, R218, and R170) are analyzed to identify the most suitable fluids for different operating conditions. The source temperature is varied between 125 °C and 200 °C, to study its effect on the efficiency of the cycle for fixed and variable pressure ratios. The energy and exergy efficiencies for each working fluid are obtained and the optimum fluid is selected. It is found that thermal efficiencies as high as 21% can be obtained with 200 °C source temperature and 10 °C cooling water temperature considered in this study. For medium source temperatures (125–150 °C), thermal efficiencies higher than 12% are obtained.

References

1.
Renner
,
J. L.
,
2006
, “
Geothermal Technologies Program: The Future of Geothermal Energy
,” OSTI: 911903, available at: http://www1.eere.energy.gov/geothermal/future_geothermal.html
2.
Kalina
,
A. I.
,
1983
,
Combined Cycle and Waste Heat Recovery Power Systems Based on a Novel Thermodynamic Energy Cycle Utilizing Low-Temperature Heat for Power Generation
.
3.
Lu
,
S.
, and
Goswami
,
D. Y.
,
2003
, “
Optimization of a Novel Combined Power/Refrigeration Thermodynamic Cycle
,”
ASME J. Sol. Energy Eng.
,
125
(
2
), pp.
212
217
.10.1115/1.1562950
4.
Goswami
,
D. Y.
, and
Xu
,
F.
,
1999
, “
Analysis of a New Thermodynamic Cycle for Combined Power and Cooling Using:Low and Mid Temperature Solar Collectors
,”
ASME J. Sol. Energy Eng.
,
121
(
2
), pp.
91
97
.10.1115/1.2888152
5.
Vijayaraghavan
,
S.
, and
Goswami
,
D. Y.
,
2006
, “
A Combined Power and Cooling Cycle Modified to Improve Resource Utilization Efficiency Using a Distillation Stage
,”
Energy
,
31
(
8–9
), pp.
1177
1196
.10.1016/j.energy.2005.04.014
6.
Steidel
,
R. F.
,
Pankow
,
D. H.
, and
Brown
,
K. A.
,
1983
, “
The Empirical Modeling of a Lysholm Screw Expander
,”
Proceedings of 18th Intersociety Energy Conversion Engineering conference on Energy for the Marketplace
, (Orlando, USA.: Aug. 21–26), 1, Thermal Energy Syst., New York, Am. Inst. Chem. Eng., 1983, Session 5, Paper No. 839048: pp. 286–293.
7.
Chen
,
H.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2010
, “
A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-Grade Heat
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
3059
3067
.10.1016/j.rser.2010.07.006
8.
Padilla
,
R. V.
,
Archibold
,
A. R.
,
Demirkaya
,
G.
,
Besarati
,
S.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. L.
,
2012
, “
Performance Analysis of a Rankine Cycle Integrated With the Goswami Combined Power and Cooling Cycle
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032001
.10.1115/1.4006434
9.
Demirkaya
,
G.
,
Besarati
,
S.
,
Padilla
,
R. V.
,
Archibold
,
A. R.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. L.
,
2012
, “
Multi-Objective Optimization of a Combined Power and Cooling Cycle for Low-Grade and Midgrade Heat Sources
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032002
.10.1115/1.4005922
10.
Vijayaraghavan
,
S.
, and
Goswami
,
D. Y.
,
2003
, “
On Evaluating Efficiency of a Combined Power and Cooling Cycle
,”
ASME J. Energy Resour. Technol.
,
125
(
3
), pp.
221
227
.10.1115/1.1595110
11.
Andersen
,
W. C.
, and
Bruno
,
T. J.
,
2005
, “
Rapid Screening of Fluids for Chemical Stability in Organic Rankine Cycle Applications
,”
Ind. Eng. Chem. Res.
,
44
(
15
), pp.
5560
5566
.10.1021/ie050351s
12.
Khaliq
,
A.
, and
Trivedi
,
S. K.
,
2012
, “
Second Law Assessment of a Wet Ethanol Fuelled HCCI Engine Combined With Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022201
.10.1115/1.4005698
13.
Srinivasan
,
K. K.
,
Mago
,
P. J.
,
Zdaniuk
,
G. J.
,
Chamra
,
L. M.
, and
Midkiff
,
K. C.
,
2008
, “
Improving the Efficiency of the Advanced Injection Low Pilot Ignited Natural Gas Engine Using Organic Rankine Cycles
,”
ASME J. Energy Resour. Technol.
,
130
(
2
), p.
022201
.10.1115/1.2906123
14.
Chen
,
H.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. K.
,
2011
, “
Energetic and Exergetic Analysis of CO2- and R32-Based Transcritical Rankine Cycles for Low-Grade Heat Conversion
,”
Appl. Energy
,
88
(
8
), pp.
2802
2808
.10.1016/j.apenergy.2011.01.029
15.
Saleh
,
B.
,
Koglbauer
,
G.
,
Wendland
,
M.
, and
Fischer
,
J.
,
2007
, “
Working Fluids for Low-Temperature Organic Rankine Cycles
,”
Energy
,
32
(
7
), pp.
1210
1221
.10.1016/j.energy.2006.07.001
16.
Gu
,
Z.
, and
Sato
,
H.
,
2001
, “
Optimization of Cyclic Parameters of a Supercritical Cycle for Geothermal Power Generation
,”
Energy Convers. Manage.
,
42
(
12
), pp.
1409
1416
.10.1016/S0196-8904(00)00145-X
17.
Lakew
,
A. A.
, and
Bolland
,
O.
,
2010
, “
Working Fluids for Low-Temperature Heat Source
,”
Appl. Therm. Eng.
,
30
(
10
), pp.
1262
1268
.10.1016/j.applthermaleng.2010.02.009
18.
Augustine
,
C.
,
Field
,
R.
,
DiPippo
,
R.
,
Gigliucci
,
G.
,
Fastelli
,
I.
, and
Tester
,
J.
,
2009
, “
Modeling and Analysis of Sub- and Supercritical Binary Rankine Cycles for Low- to Mid-Temperature Geothermal Resources
,” GRC Transactions, Vol. 33.
19.
Maizza
,
V.
, and
Maizza
,
A.
,
1996
, “
Working Fluids in Non-Steady Flows for Waste Energy Recovery Systems
,”
Appl. Therm. Eng.
,
16
(
7
), pp.
579
590
.10.1016/1359-4311(95)00044-5
20.
He
,
C.
,
Liu
,
C.
,
Gao
,
H.
,
Xie
,
H.
,
Li,
,
Y.
,
Wu
,
S.
, and
Xu
,
J.
,
2012
, “
The Optimal Evaporation Temperature and Working Fluids for Subcritical Organic Rankine Cycle
,”
Energy
,
38
(
1
), pp.
136
143
.10.1016/j.energy.2011.12.022
21.
Maizza
,
V.
, and
Maizza
,
A.
,
2001
, “
Unconventional Working Fluids in Organic Rankine-Cycles for Waste Energy Recovery Systems
,”
Appl. Therm. Eng.
,
21
(
3
), pp.
381
390
.10.1016/S1359-4311(00)00044-2
22.
Gawlik
,
K.
, and
Hassani
,
V.
,
1997
, “
Advanced Binary Cycles: Optimum Working Fluids,
Energy Conversion Engineering Conference
, IECEC-97., Vol. 3, pp.
1809
1815
.
23.
Vijayaraghavan
,
S.
, and
Goswami
,
D. Y.
,
2005
, “
Organic Working Fluids for a Combined Power and Cooling Cycle
,”
ASME J. Energy Resour. Technol.
,
127
(
2
), pp.
125
130
.10.1115/1.1885039
24.
Wang
,
Z. Q.
,
Zhou
,
N. J.
,
Guo
,
J.
, and
Wang
,
X. Y.
,
2012
, “
Fluid Selection and Parametric Optimization of Organic Rankine Cycle Using Low Temperature Waste Heat
,”
Energy
,
40
(
1
), pp.
107
115
.10.1016/j.energy.2012.02.022
25.
Roy
,
J. P.
, and
Misra
,
A.
,
2012
, “
Parametric Optimization and Performance Analysis of a Regenerative Organic Rankine Cycle Using R-123 for Waste Heat Recovery
,”
Energy
,
39
(
1
), pp.
227
235
.10.1016/j.energy.2012.01.026
26.
Chen
,
H.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. K.
,
2011
, “
A Supercritical Rankine Cycle Using Zeotropic Mixture Working Fluids for the Conversion of Low-Grade Heat Into Power
,”
Energy
,
36
(
1
), pp.
549
555
.10.1016/j.energy.2010.10.006
27.
Ochs
,
T. L.
, and
O'connor
,
W. K.
,
2006
, “Energy Recovery During Expansion of Compressed Gas Using Power Plant Low-Quality Heat Sources, Patent Application No. 7007474, Assignee: The United States of America as represented by the United States Department of Energy, Washington, DC.
28.
Chacartegui
,
R.
,
Sanchez
,
D.
,
Munoz
,
J. M.
, and
Sanchez
,
T.
,
2009
, “
Alternative ORC Bottoming Cycles FOR Combined Cycle Power Plants
,”
Appl. Energy
,
86
(
10
), pp.
2162
2170
.10.1016/j.apenergy.2009.02.016
29.
Karellas
,
S.
, and
Schuster
,
A.
,
2008
, “
Supercritical Fluid Parameters in Organic Rankine Cycle Applications
,”
Int. J. Thermodyn.
,
11
(
3
), pp.
101
108
.
30.
Cayer
,
E.
,
Galanis
,
N.
, and
Nesreddine
,
H.
,
2010
, “
Parametric Study and Optimization of a Transcritical Power Cycle Using a Low Temperature Source
,”
Appl. Energy
,
87
(
4
), pp.
1349
1357
.10.1016/j.apenergy.2009.08.031
31.
Heberle
,
F.
, and
Brüggemann
,
D.
, “
Exergy Based Fluid Selection for a Geothermal Organic Rankine Cycle for Combined Heat and Power Generation
,”
Appl. Therm. Eng.
,
30
(
11–12
), pp.
1326
1332
.10.1016/j.applthermaleng.2010.02.012
32.
Guo
,
T.
,
Wang
,
H.
, and
Zhang
,
S.
,
2010
, “
Working Fluids of a Low-Temperature Geothermally-Powered Rankine Cycle for Combined Power and Heat Generation System
,”
Sci. China Technol. Sci.
,
53
(
11
), pp.
3072
3078
.10.1007/s11431-010-4102-5
33.
Guo
,
T.
,
Wang
,
H. X.
, and
Zhang
,
S. J.
,
2011
, “
Fluids and Parameters Optimization for a Novel Cogeneration System Driven by Low-Temperature Geothermal Sources
,”
Energy
,
36
(
5
), pp.
2639
2649
.10.1016/j.energy.2011.02.005
34.
Guo
,
T.
,
Wang
,
H. X.
, and
Zhang
,
S. J.
,
2011
, “
Selection of Working Fluids for a Novel Low-Temperature Geothermally-Powered ORC Based Cogeneration System
,”
Energy Convers. Manage.
,
52
(
6
), pp.
2384
2391
.10.1016/j.enconman.2010.12.038
35.
DiPippo
,
R.
,
2004
, “
Second Law Assessment of Binary Plants Generating Power From Low-Temperature Geothermal Fluids
,”
Geothermics
,
33
(
5
), pp.
565
586
.10.1016/j.geothermics.2003.10.003
36.
Li
,
J.
,
Pei
,
G.
,
Li
,
Y.
,
Wang
,
D.
, and
Ji
,
J.
,
2012
, “
Energetic and Exergetic Investigation of an Organic Rankine Cycle at Different Heat Source Temperatures
,”
Energy
,
38
(
1
), pp.
85
95
.10.1016/j.energy.2011.12.032
37.
Bliem
,
C. J.
, and
Mines
,
G. L.
,
1989
, “
Advanced Binary Geothermal Power Plants Working Fluid Property Determination and Heat Exchanger Design
,” OSTI ID: 6303098, Paper No. DE89011144.
38.
Bliem
,
C. J.
, and
Mines
,
G. L.
,
1984
, “
Initial Results for Supercritical Cycle Experiments Using Pure and Mixed-Hydrocarbon Working Fluids
,” OSTI ID: 6562256, Paper NO. DE84017008.
39.
Bliem
,
C. J.
,
Demuth
,
O. J.
,
Mines
,
G. L.
, and
Swank
,
W. D.
,
1986
, “
Vaporization at Supercritical Pressures and Counterflow Condensing of Pure and Mixed-Hydrocarbon Working Fluids for Geothermal Power Plants
,” OSTI ID: 5641225, Paper No. DE86011034.
40.
Badr
,
O.
,
Probert
,
S. D.
, and
O'Callaghan
,
P. W.
,
1985
, “
Selecting a Working Fluid for a Rankine-Cycle Engine
,”
Appl. Energy
,
21
(
1
), pp.
1
42
.10.1016/0306-2619(85)90072-8
41.
Badr
,
O.
,
O'Callaghan
,
P. W.
, and
Probert
,
S. D.
,
1985
, “
Thermodynamic and Thermophysical Properties of Organic Working Fluids for Rankine-Cycle Engines
,”
Appl. Energy
,
19
(
1
), pp.
1
40
.10.1016/0306-2619(85)90037-6
42.
Wark
,
K.
,
Thermodynamics
,
McGraw-Hill
,
New York
.
43.
Aljundi
,
I. H.
,
2011
, “
Effect of Dry Hydrocarbons and Critical Point Temperature on the Efficiencies of Organic Rankine Cycle
,”
Renewable Energy
,
36
(
4
), pp.
1196
1202
.10.1016/j.renene.2010.09.022
44.
Borsukiewicz-Gozdur
,
A.
, and
Nowak
,
W.
,
2007
, “
Comparative Analysis of Natural and Synthetic Refrigerants in Application to Low Temperature Clausius-Rankine Cycle
,”
Energy
,
32
(
4
), pp.
344
352
.10.1016/j.energy.2006.07.012
45.
Zhang
,
X. R.
,
Yamaguchi
,
H.
,
Uneno
,
D.
,
Fujima
,
K.
,
Enomoto
,
M.
, and
Sawada
,
N.
,
2006
, “
Analysis of a Novel Solar Energy-Powered Rankine Cycle for Combined Power and Heat Generation Using Supercritical Carbon Dioxide
,”
Renewable Energy
,
31
(
12
), pp.
1839
1854
.10.1016/j.renene.2005.09.024
46.
Zhang
,
X. R.
,
Yamaguchi
,
H.
, and
Uneno
,
D.
,
2007
, “
Experimental Study on the Performance of Solar Rankine System Using Supercritical CO2
,”
Renewable Energy
,
32
(
15
), pp.
2617
2628
.10.1016/j.renene.2007.01.003
47.
Zhang
,
X. R.
,
Yamaguchi
,
H.
,
Fujima
,
K.
,
Enomoto
,
M.
, and
Sawada
,
N.
,
2006
,
Experimental Performance Analysis of Supercritical CO2 Thermodynamic Cycle Powered by Solar Energy
, AIP Conf. Proc. 832, The Second International Conference on Flow Dynamics, Nov 16–18, 2005, Sendai, Japan, pp. 419–424.
48.
Cayer
,
E.
,
Galanis
,
N.
,
Desilets
,
M.
,
Nesreddine
,
H.
, and
Roy
,
P.
,
2009
, “
Analysis of a Carbon Dioxide Transcritical Power Cycle Using a Low Temperature Source
,”
Appl. Energy
,
86
(
7–8
), pp.
1055
1063
.10.1016/j.apenergy.2008.09.018
49.
50.
Brown
,
J. S.
,
2007
, “
Predicting Performance of Refrigerants Using the Peng-Robinson Equation of State
,”
Int. J. Refrigeration
,
30
(
8
), pp.
1319
1328
.10.1016/j.ijrefrig.2007.04.006
You do not currently have access to this content.