Abstract

Proper evaluation of the Gibbs free energy and other properties of seawater and other aqueous solutions is essential in the analysis of desalination systems. Standard seawater has been studied extensively and property data are readily accessible. However, many aqueous solutions requiring desalination have significantly different compositions from seawater and seawater data are generally not accurate for these solutions. Experimental data for a given aqueous solution may be unavailable under the conditions of interest. Therefore, there is a need to model relevant physical properties from chemical thermodynamic principles. In particular, for solutions that are not ideal, the activity and fugacity coefficients must be considered. In this paper, the effect of nonidealities in sodium chloride (NaCl) solutions is considered through a parametric study of the least work of separation for a desalination system. This study is used to determine the conditions under which the ideal solution approximation is valid and also to determine when an NaCl solution is a good approximation to standard seawater. It is found that the ideal solution approximation is reasonable within ranges of salinities and recovery ratios typical of those found in the seawater desalination industry because many of the nonidealities cancel out, but not because the solution behaves ideally. Additionally, it is found that NaCl solutions closely approximate natural seawater only at salinities typically found in seawater and not for salinities found in typical brackish waters.

References

1.
Cooper
,
J. R.
,
2008
, “
Release on the IAPWS Formulation 2008 for the Thermodynamic Properties of Seawater
,”
The International Association for the Properties of Water and Steam
, September, pp.
1
19
.
2.
Feistel
,
R.
,
2008
, “
A Gibbs Function for Seawater Thermodynamics for −6 to 80 °C and Salinity up to 120 g kg−1
,”
Deep-Sea Res., Part I
,
55
(
12
), pp.
1639
1671
.10.1016/j.dsr.2008.07.004
3.
Lewis
,
E.
, and
Perkin
,
R.
,
1981
, “
The Practical Salinity Scale 1978: Conversion of Existing Data
,”
Deep-Sea Res., Part I
,
28
(
4
), pp.
307
328
.10.1016/0198-0149(81)90002-9
4.
Sharqawy
,
M. H.
,
Lienhard V
,
J. H.
, and
Zubair
,
S. M.
,
2010
, “
Thermophysical Properties of Seawater: A Review of Existing Correlations and Data
,”
Desalination Water Treat.
,
16
, pp.
354
380
.10.5004/dwt.2010.1079
5.
Biesheuvel
,
P.
,
2009
, “
Thermodynamic Cycle Analysis for Capacitive Deionization
,”
J. Colloid Interface Sci.
,
332
(
1
), pp.
258
264
.10.1016/j.jcis.2008.12.018
6.
La Mantia
,
F.
,
Pasta
,
M.
,
Deshazer
,
H. D.
,
Logan
,
B. E.
, and
Cui
,
Y.
,
2011
, “
Batteries for Efficient Energy Extraction From a Water Salinity Difference
,”
Nano Lett.
,
11
(
4
), pp.
1810
1813
.10.1021/nl200500s
7.
Sharqawy
,
M. H.
,
Lienhard V
,
J. H.
, and
Zubair
,
S. M.
,
2011
, “
On Exergy Calculations of Seawater With Applications in Desalination Systems
,”
Int. J. Therm. Sci.
,
50
(
2
), pp.
187
196
.10.1016/j.ijthermalsci.2010.09.013
8.
Nafey
,
A.
,
Fath
,
H.
, and
Mabrouk
,
A.
,
2008
, “
Thermoeconomic Design of a Multi-Effect Evaporation Mechanical Vapor Compression (MEE-MVC) Desalination Process
,”
Desalination
,
230
(
1–3
), pp.
1
15
.10.1016/j.desal.2007.08.021
9.
Banat
,
F.
, and
Jwaied
,
N.
,
2008
, “
Exergy Analysis of Desalination by Solar-Powered Membrane Distillation Units
,”
Desalination
,
230
(
1–3
), pp.
27
40
.10.1016/j.desal.2007.11.013
10.
Palmer
,
S. C.
, and
Shelton
,
S. V.
,
1999
, “
Sensitivity Analysis of Absorption Cycle Fluid Thermodynamic Properties
,”
ASME J. Energy Resour. Technol.
,
121
(
2
), pp.
137
142
.10.1115/1.2795069
11.
Thomson
,
M.
,
Miranda
,
M. S.
, and
Infield
,
D.
,
2003
, “
A Small-Scale Seawater Reverse-Osmosis System With Excellent Energy Efficiency Over a Wide Operating Range
,”
Desalination
,
153
(
1–3
), pp.
229
236
.10.1016/S0011-9164(02)01141-4
12.
Liu
,
M.
,
Yu
,
S.
,
Tao
,
J.
, and
Gao
,
C.
,
2008
, “
Preparation, Structure Characteristics and Separation Properties of Thin-Film Composite Polyamide-Urethane Seawater Reverse Osmosis Membrane
,”
J. Membr. Sci.
,
325
(
2
), pp.
947
956
.10.1016/j.memsci.2008.09.033
13.
Klinko
,
K.
,
Light
,
W.
, and
Cummings
,
C.
,
1985
, “
Factors Influencing Optimum Seawater Reverse Osmosis System Designs
,”
Desalination
,
54
, pp.
3
18
.10.1016/0011-9164(85)80002-3
14.
McCutcheon
,
J. R.
,
McGinnis
,
R. L.
, and
Elimelech
,
M.
,
2006
, “
Desalination by Ammonia—Carbon Dioxide Forward Osmosis: Influence of Draw and Feed Solution Concentrations on Process Performance
,”
J. Membr. Sci.
,
278
(
1–2
), pp.
114
123
.10.1016/j.memsci.2005.10.048
15.
Achilli
,
A.
,
Cath
,
T. Y.
, and
Childress
,
A. E.
,
2009
, “
Power Generation With Pressure Retarded Osmosis: An Experimental and Theoretical Investigation
,”
J. Membr. Sci.
,
343
(
1–2
), pp.
42
52
.10.1016/j.memsci.2009.07.006
16.
Burheim
,
O.
,
Sales
,
B. B.
,
Schaetzle
,
O.
,
Liu
,
F.
, and
Hammelers
,
H. V. M.
,
2013
, “
Auto Generative Capacitive Mixing for Power Conversion of Sea and River Water by the Use of Membranes
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
011601
.10.1115/1.4007717
17.
Koch Membrane Systems
,
2011
,
Fluid Systems TFC-FR 4″ Element—High Rejection, Fouling Resistant Low Pressure RO Element for Brackish Water
,
Technical Data Sheet
,
Wilmington, MA
.
18.
Robinson
,
R. A.
, and
Stokes
,
R. H.
,
2002
,
Electrolyte Solutions
, 2nd revised ed.,
Dover Publications, Inc.
,
Mineola, NY
.
19.
Bromley
,
L. A.
,
Singh
,
D.
,
Ray
,
P.
,
Sridhar
,
S.
, and
Read
,
S. M.
,
1974
, “
Thermodynamic Properties of Sea Salt Solutions
,”
AIChE J.
,
20
(
2
), pp.
326
335
.10.1002/aic.690200218
20.
Tester
,
J. W.
, and
Modell
,
M.
,
1997
,
Thermodynamics and Its Applications
, 3rd ed.,
Prentice Hall PTR
,
Upper Saddle River, NJ
.
21.
Stumm
,
W.
, and
Morgan
,
J. J.
,
1996
,
Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters
, 3rd ed.,
John Wiley & Sons, Inc.
,
New York
.
22.
Pitzer
,
K. S.
,
1995
,
Thermodynamics
, 3rd ed.,
McGraw-Hill, Inc.
,
New York
.
23.
Debye
,
P.
, and
Hückel
,
E.
,
1923
, “
Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen
,”
Phys. Z.
,
24
(
9
), pp.
185
206
[On the Theory of Electrolytes I. Freezing Point Depression and Related Phenomena].
24.
Debye
,
P.
, and
Hückel
,
E.
,
1923
, “
Zur Theorie der Elektrolyte. II. Das Grenzgesetz für die elektrische Leitfähigkeit
,”
Phys. Z.
,
24
, pp.
305
325
[On the Theory of Electrolytes II. Limiting Law for Electric Conductivity].
25.
Debye
,
P.
,
1923
, “
Over Ionen en Hun Activiteit
,”
Chem. Weekbl.
,
20
, pp.
562
568
[On Ions and Their Activity].
26.
Newman
,
J. S.
,
1973
,
Electrochemical Systems
,
Prentice-Hall, Inc.
,
Englewood Cliffs, NJ
.
27.
Pitzer
,
K. S.
,
Peiper
,
J. C.
, and
Busey
,
R. H.
,
1984
, “
Thermodynamic Properties of Aqueous Sodium Chloride Solutions
,”
J. Phys. Chem. Ref. Data
,
13
(
1
), pp.
1
102
.10.1063/1.555709
28.
The MathWorks
,
2011
,
matlab R2011a Software
, The MathWorks, Inc., Natick, MA.
29.
Debye
,
P.
,
1924
, “
Osmotische Zustandsgleinchung und Activität verdünnter starker Elektrolyte
,”
Phys. Z.
,
25
(
5
), pp.
97
107
[Osmotic Equation of State and Activity of Diluted Strong Electrolytes].
30.
Sharqawy
,
M. H.
,
Lienhard V
,
J. H.
, and
Zubair
,
S. M.
,
2010
, “
Thermophysical Properties of Sea Water: A Review of Existing Correlations and Data
,”
Desalination and Water Treatment
,
16
(2010), pp. 354–380.10.5004/dwt.2010.1079
31.
Mistry
,
K. H.
,
McGovern
,
R. K.
,
Thiel
,
G. P.
,
Summers
,
E. K.
,
Zubair
,
S. M.
, and
Lienhard V
,
J. H.
,
2011
, “
Entropy Generation Analysis of Desalination Technologies
,”
Entropy
,
13
(
10
), pp.
1829
1864
.10.3390/e13101829
32.
Mistry
,
K. H.
,
Lienhard V
,
J. H.
, and
Zubair
,
S. M.
,
2010
, “
Effect of Entropy Generation on the Performance of Humidification-Dehumidification Desalination Cycles
,”
Int. J. Therm. Sci.
,
49
(
9
), pp.
1837
1847
.10.1016/j.ijthermalsci.2010.05.002
33.
Simpson
,
H. C.
, and
Silver
,
R. S.
,
1963
, “
Technology of Sea Water Desalination
,”
Desalination Research Conference Proceedings
,
National Academy of Sciences, National Research Council Publication
, Vol.
942
, pp.
387
413
.
34.
El-Sayed
,
Y. M.
, and
Silver
,
R. S.
,
1980
,
Principles of Desalination
, 2nd ed., Vol. A,
Academic Press
,
New York, NY
, Chap. Fundamentals of Distillation, pp.
55
109
.
35.
Spiegler
,
K. S.
, and
El-Sayed
,
Y. M.
,
1994
,
A Desalination Primer: Introductory Book for Students and Newcomers to Desalination
,
Balaban Desalination Publications
,
Santa Maria Imbaro, Italy
.
36.
Wilf
,
M.
,
2007
,
The Guidebook to Membrane Desalination Technology
,
Balaban Desalination Publications
,
L'Aquila, Italy
.
37.
Public Health and the Environment
,
2007
, “
Desalination for Safe Water Supply—Guidance for the Health and Environmental Aspects Applicable to Desalination
,” Technical Report No. WHO/SDE/WSH/07/0?,
World Health Organization
,
Geneva
.
38.
Sommariva
,
C.
,
2010
,
Desalination and Advanced Water Treatment: Economics and Financing
.
Balaban Desalination Publications
,
Hopkinton, MA
.
39.
Stewart
,
R. H.
,
2008
,
Introduction to Physical Oceanography
,
Department of Oceanography, Texas A&M University
,
College Station, TX
.
40.
Mistry
,
K. H.
,
Hunter
,
H. A.
, and
Lienhard V
,
J. H.
,
2013
, “
Effect of Composition and Nonideal Solution Behavior on Desalination Calculations for Mixed Electrolyte Solutions With Comparison to Seawater
,”
Desalination
,
318
, pp.
34
47
.10.1016/j.desal.2013.03.015
You do not currently have access to this content.