The effects of diluents on the liftoff of turbulent, partially premixed methane and ethylene jet flames for potential impact in industrial burner operation for multifuel operation have been investigated. Both fuel jets were diluted with nitrogen and argon in separate experiments, and the flame liftoff heights were compared for a variety of flow conditions. Methane flames have been shown to liftoff at lower jet velocities and reach blowout conditions much more rapidly than ethylene flames. Diluting ethylene and methane jets with nitrogen and argon, independently, resulted in varying trends for each fuel. At low dilution levels (∼5% by mole fraction), methane flames were lifted to similar heights, regardless of the diluent type; however, at higher dilution levels (∼10% by mole fraction) the argon diluent produced a flame which stabilized farther downstream. Ethylene jet flames proved to vary less in liftoff heights with respect to diluent type. Significant soot reduction with dilution is witnessed for both ethylene and methane flames, in that flame luminosity alteration occurs at the flame base at increasing levels of argon and nitrogen dilution. The increasing dilution levels also decreased the liftoff velocity of the fuel. Analysis showed little variance among liftoff heights in ethylene flames for the various inert diluents, while methane flames proved to be more sensitive to diluent type. This sensitivity is attributed to the more narrow limits of flammability of methane in comparison to ethylene, as well as the much higher flame speed of ethylene flames.

References

1.
Schefer
,
R. W.
,
1994
, “
Stabilization of Lifted Turbulent Jet Flames
,”
Combust. Flame
,
99
(1), pp.
75
78
.10.1016/0010-2180(94)90083-3
2.
Terry
,
S. D.
, and
Lyons
,
K. M.
,
2006
, “
Turbulent Lifted Flames in the Hysteresis Regime and the Effects of Coflow
,”
ASME J. Energy Resour. Technol.
,
128
(
4
), pp.
319
324
.10.1115/1.2358147
3.
Gollahalli
,
S. R.
,
Savas
,
Ö
,
Huang
,
R. F.
, and
Azara
,
J. L. R.
,
1988
, “
Structure of Attached and Lifted Gas Jet Flames in Hysteresis Region
,”
Proc. Combust. Inst.
,
21
(
1
), pp.
1463
1471
.10.1016/S0082-0784(88)80379-5
4.
Iyogun
,
C. O.
, and
Birouk
,
M.
,
2009
, “
Stability of a Turbulent Jet Methane Flame Issuing From an Asymmetrical Nozzles With Sudden Expansion
,”
Combust. Sci. Technol.
,
181
(
1
), pp.
1443
1463
.10.1080/00102200903182742
5.
Pitts
,
W.
,
1988
, “
Assessment of Theories for the Behavior and Blowout of Lifted Turbulent Jet Diffusion Flames
,”
Proc. Combust. Inst.
,
22
(
1
), pp.
427
509
10.1016/S0082-0784(89)80090-6.
6.
Lyons
,
K. M.
,
2007
, “
Toward an Understanding of the Stabilization Mechanisms of Lifted Turbulent Jet Flames: Experiments
,”
Prog. Energy Combust. Sci.
,
33
(
2
), pp.
211
231
.10.1016/j.pecs.2006.11.001
7.
Wilson
,
D. A.
, and
Lyons
,
K. M.
,
2009
, “
On Diluted-Fuel Combustion Issues in Burning Biogas Surrogates
,”
ASME J. Energy Resour. Technol.
,
131
(
4
), p.
041802
.10.1115/1.4000152
8.
Stamps
,
D.
, and
Tieszen
,
S.
,
2014
, “
Blowout of Turbulent Jet Diffusion Flames
,”
Fuel
,
118
(
2014
), pp.
113
122
.10.1016/j.fuel.2013.10.030
9.
Kalghatgi
,
G. T.
,
1981
, “
Blow-Out Stability of Gaseous Jet Diffusion Flames
,”
Combust. Sci. Technol.
,
26
(
5–6
), pp.
233
239
.10.1080/00102208108946964
10.
Moore
,
N. J.
,
Terry
,
S. D.
, and
Lyons
,
K. M.
,
2011
, “
Flame Hysteresis Effects in Methane Jet Flames in Air-Coflow
,”
ASME J. Energy Resour. Technol.
,
133
(
2
), pp.
319
324
.10.1115/1.4003806
11.
Leung
,
T.
, and
Wierzba
,
I.
,
2009
, “
The Effect of Co-Flow Stream Velocity on Turbulent Non-Premixed Jet Flame Stability
,”
Proc. Combust. Instit.
,
32
(
2
), pp.
1671
1678
.10.1016/j.proci.2008.06.071
12.
Cha
,
M. S.
, and
Chung
,
S. H.
,
1996
, “
Characteristics of Lifted Flames in Nonpremixed Turbulent Confined Jets
,”
Proc. Combust. Instit.
,
26
, pp.
121
128
.10.1016/S0082-0784(96)80208-6
13.
Moore
,
N. J.
, and
Lyons
,
K. M.
,
2010
, “
Leading-Edge Flame Fluctuations in Lifted Turbulent Flames
,”
Combust. Sci. Technol.
,
182
(
2
), pp.
777
793
.10.1080/00102200903355017
14.
Moore
,
N. J.
,
McCraw
,
J. L.
, and
Lyons
,
K. M.
,
2008
, “
Observations on Jet Flame Blowout
,”
Int. J. React. Syst.
,
2008
, pp.
1
7
.10.1155/2008/461059
15.
Takahashi
,
F.
,
Mizomoto
,
M.
,
Ikai
,
S.
, and
Futaki
,
N.
,
1985
, “
Lifting Mechanisms of Free Jet Diffusion Flames
,”
Proc. Combust. Instit.
,
20
(
1
), pp.
295
302
.10.1016/S0082-0784(85)80514-2
16.
Wu
,
Y.
,
Lu
,
Y.
,
Al-Rahbi
,
I. S.
, and
Kalghatgi
,
G. T.
,
2009
, “
Prediction of the Lift-Off, Blow-Out and Blow-Off Stability Limits of Pure Hydrogen and Hydrocarbon Mixture Jet Flames
,”
Int. J. Hydrog. Energy
,
34
(14), pp.
5940
5945
.10.1016/j.ijhydene.2009.01.084
17.
Moore
,
N. J.
,
Kribs
,
J. D.
, and
Lyons
,
K. M.
,
2011
, “
Investigation of Jet-Flame Blowout With Lean-Limit Considerations
,”
Flow Turbul. Combust.
,
87
(
4
), pp.
525
536
.10.1007/s10494-011-9334-3
18.
Karbasi
,
M.
, and
Wierzba
,
I.
,
1998
, “
Prediction and Validation of Blowout Limits of Co-Flowing Jet Diffusion Flames—Effect of Dilution
,”
ASME J. Energy Resour. Technol.
,
120
(
2
), pp.
167
171
.10.1115/1.2795029
19.
Chao
,
Y. C.
,
Wu
,
C. Y.
,
Lee
,
K. Y.
,
Li
,
Y. H.
,
Chen
,
R. H.
, and
Cheng
,
T. S.
,
2004
, “
Effects of Dilution on Blowout Limits of Turbulent Jet Flames
,”
Combust. Sci. Technol.
,
176
(10), pp.
1735
1753
.10.1080/00102200490487580
20.
Wilson
,
D. A.
, and
Lyons
,
K. M.
,
2008
, “
Effects of Dilution and Co-Flow on the Stability of Lifted Non-Premixed Biogas-Like Flames
,”
Fuel
,
87
(
3
), pp.
405
413
.10.1016/j.fuel.2007.05.012
21.
Choudhuri
,
A. R.
,
Subramanya
,
M.
, and
Gollahalli
,
S. R.
,
2008
, “
Flame Extinction Limits of H2-CO Fuel Blends
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
031501
.10.1115/1.2835059
22.
Gollahalli
,
S. R.
,
1977
, “
Effects of Diluents on the Flame Structure and Radiation of Propane Jet Flames in a Concentric Stream
,”
Combust. Sci. Technol.
,
15
(
3–4
), pp.
147
159
.10.1080/00102207708946780
23.
Smooke
,
M. D.
,
McEnally
,
C. S.
,
Fielding
,
J.
,
Long
,
M. B.
,
Pfefferie
,
L. D.
,
Hall
,
R. J.
, and
Colket
,
M. B.
,
2004
, “
Investigation of the Transition From Lightly Sooting Towards Heavily Sooting Coflow Ethylene Diffusion Flames
,”
Combust. Theory Model
,
8
(3), pp.
593
606
.10.1088/1364-7830/8/3/009
24.
Broadwell
,
J. E.
,
Dahm
,
W. J. A.
, and
Mungal
,
M. G.
,
1984
, “
Blowout of Turbulent Diffusion Flames
,”
Proc. Combust. Inst.
,
20
(
1
), pp.
303
310
.10.1016/S0082-0784(85)80515-4
25.
Yumlu
,
V. S.
,
1968
, “
The Effects of Additives on the Burning Velocities of Flames and Their Possible Prediction by a Mixing Rule
,”
Combust. Flame
,
12
(
1
), pp.
14
18
.10.1016/0010-2180(68)90004-7
26.
Brown
,
C. D.
,
Watson
,
K. A.
, and
Lyons
,
K. M.
,
1999
, “
Studies on Lifted Jet Flames in Coflow: The Stabilization Mechanisms in the Near- and Far-Fields
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
249
273
.10.1023/A:1009925500084
27.
Rajaratnam
,
N.
,
1976
,
Turbulent Jets
,
Elsevier
,
NY
.
28.
Tieszan
,
S. R.
,
Stamps
,
D. W.
, and
O'Hern
,
T. J.
,
1996
, “
A Heuristic Model of Turbulent Mixing Applied to Blowout of Turbulent Jet Diffusion Flames
,”
Combust. Flame
,
106
(
4
), pp.
442
462
.10.1016/0010-2180(96)00008-9
You do not currently have access to this content.