A common platform of wind and wave energy conversion should reduce upfront as well as maintenance costs relative to wave and offshore wind energy converters installed separately. For this cost reduction to happen, temporally integrated resource estimate of wind and wave at a given coordinate is desirable so that areas of high wind and wave energy convergences can be identified. In this paper, a combined energy resource potential of wave and wind modeling procedure is shown using the California coast as a case study, mapped for three distinct years: a “calm” year, an El Nino year, and a recent “normal” year allowing model analyses of a range of possible weather conditions and sea states along the coastline.

References

1.
Fronk
,
B. M.
,
Neal
,
R.
, and
Garimella
,
S.
,
2010
, “
Evolution of the Transition to a World Driven by Renewable Energy
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
021009
.
2.
Center for Sustainable Systems
,
2012
,
U.S. Renewable Energy Factsheet
,
University of Michigan
,
Ann Arbor
,
MI
.
3.
Bossong
,
K.
,
2013
, “
Renewable Energy Provides 14% of U.S. Electrical Generation During First Half of 2013
,” Renewable Energy World, August (epub), accessed Aug. 1, 2013, http://www.renewableenergyworld.com/articles/2013/08/renewable-energy-tops-14-of-us-electrical-generation-during-first-half-of-2013
4.
U.S. Energy Information Administration
,
2013
,
Annual Energy Outlook 2013
,
U.S. Department of Energy (DOE)
,
Washington, DC
.
5.
The White House
,
2014
, “
Blueprint for a Secure Energy Future
,” accessed Jan. 31, 2013, http://www.whitehouse.gov/sites/default/files/blueprint_secure_energy_future.pdf
6.
Prasad
,
B. G. S.
,
2010
, “
Energy Efficiency, Sources and Sustainability
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
020301
.
7.
Musial
,
W.
, and
Ram
,
B.
,
2010
, “
Large-Scale Offshore Wind Power in the United States: Assessments of Opportunities and Barriers
,” U.S. Department of Energy, Oakridge, TN, Report No. NREL/TP-500-40745.
8.
Beyene
,
A.
, and
Wilson
,
H. J.
,
2006
, “
Comparison of Wave Energy Flux for Northern, Central, and Southern Coast of California Based on Long-Term Statistical Data
,”
J. Energy
,
31
(
12
), pp.
1856
1869
.
9.
Pontes
,
T. M.
,
Sempreviva
,
M. A.
,
Barthelmie
,
R.
,
Giebel
,
G.
,
Costa
,
P.
, and
Sood
,
A.
,
2007
, “
Integrating Offshore Wind and Wave Resource Assessment
,”
7th European Wave and Tidal Energy Conference
(
EWTEC 2007
),
Porto, Portugal
, Sept. 11–13, p. 45.
10.
ABB
,
2011
, “
ABB Technical Application Papers No. 13 Wind Power Plants
,” ABB, Bergamo, Italy, Technical Report No. 1SDC007112G0201–10/2011–4.000.
11.
Carrillo
,
C.
,
Montano
,
A. F. O.
,
Cidras
,
J.
, and
Diaz-Dorado
,
E.
,
2013
, “
Review of Power Curve Modelling for Wind Turbines
,”
J. Renewable Sustainable Energy Rev.
,
21
, pp.
572
581
.
12.
Lene-Bluhm
,
P.
,
Paasch
,
R.
, and
Ozkan-Haller
,
H. T.
,
2011
, “
Characterizing the Wave Energy Resource of the U.S. Pacific Northwest
,”
J. Renewable Energy
,
36
(
8
), pp.
2106
2119
.
13.
Wilson
,
H. J.
, and
Beyene
,
A.
,
2007
, “
California Wave Energy Resource Evaluation
,”
J. Coastal Res.
,
23
(
3
), pp.
679
690
.
14.
Hagerman
,
G.
, and
Scott
,
G.
,
2011
,
Mapping and Assessment of the United States Ocean Wave Energy Resource
,” Electric Power Research Institute, Palo Alto, CA, Technical Report No. 1024637.
15.
The SWAN Team
,” Delft University of Technology, Last accessed May 16,
2013
, http://www.swan.tudelft.nl and http://swanmodel.sourceforge.net/online_doc/swantech/node12.html
16.
Beyene
,
A.
, and
MacPhee
,
D.
,
2011
, “
Integrating Wind and Wave Energy Conversion
,”
2011 International Conference on Electrical and Control Engineering
(
ICECE
), Yichang, China, Sept. 16–18, pp. 5983–5986.
17.
Public Domain Clip Art
, “
US State California Clip Art
,” accessed Oct. 5, 2015, http://www.pdclipart.org/displayimage.php?album=70&pos=14
18.
NOAA National Geophysical Data Center
,
2013
, “
U.S. Coastal Relief Model
,” accessed Dec. 4, 2013, http://www.ngdc.noaa.gov/mgg/fliers/04mgg01.html
19.
US Army Corps of Engineers
, “
Wave Information Study
,” accessed Dec. 4, 2013, http://wis.usace.army.mil/WIS_Documentation.shtml#po
20.
Jenkins
,
N.
,
Jacobson
,
M. Z.
, and
Stoutenburg
,
E. D.
,
2010
, “
Power Output Variations of Co-Located Offshore Wind Turbines and Wave Energy Converters in California
,”
J. Renewable Energy
,
35
(
12
), pp.
2781
2791
.
21.
Dixen
,
F. H.
,
Hansen
,
H. F.
,
Kohler
,
A.
, and
Kallesoe
,
B. S.
,
2009
, “
Prototype Test and Modeling of a Combined Wave and Wind Energy Conversion System
,”
European Wave and Tidal Energy Conference
,
Uppsala, Sweden
, Sept. 7–10, p.
7
.
22.
Brown
,
N. A.
, and
Martin
,
F.
,
2012
, “
Offshore Wave and Wind Together–Afloat
,”
4th International Conference on Ocean Energy
,
Dublin
, Oct. 17–19, pp.
1
5
.
23.
Bisht
,
R. S.
,
Datta
,
T. K.
, and
Jain
,
A. K.
,
1998
, “
Analysis of Offshore Guyed Tower Platforms to Wind and Wave Forces
,”
ASME J. Energy Resour. Technol.
,
120
(
4
), pp.
256
262
.
24.
Ertas
,
A.
, and
Lee
,
J.-H.
,
1989
, “
Stochastic Response of Tension Leg Platform to Wave and Current Forces
,”
ASME J. Energy Resour. Technol.
,
111
(
4
), pp.
221
230
.
25.
Perez
,
C.
, and
Iglesias
,
G.
,
2012
, “
Integration of Wave Energy Converters and Offshore Windmills
,”
International Conference on Ocean Energy
,
Dublin
, Oct. 17–19, p.
6
.
26.
LORC Knowledge
, “
Poseidon Floating Power
,” accessed Jan. 31, 2013, http://www.floatingpowerplant.com/
27.
Wanan
,
S.
, and
Anthony
,
L.
,
2012
, “
Assessment of Wave Energy Extraction From Seas: Numerical Validation
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041701
.
28.
Monds
,
J. R.
,
2013
, “
Multicriteria Decision Analysis for Wave Power Technology in Canada
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021201
, Paper No. JERT-12-1252.
29.
SWAN-Simulating Waves Nearshore
,” accessed May 16,
2013
, http://swanmodel.sourceforge.net/download/download.htm
You do not currently have access to this content.