Chemical-looping combustion (CLC) is a next-generation combustion technology that shows great promise in addressing the need for high-efficiency low-cost carbon capture from fossil fueled power plants. Although there have been a number of experimental studies on CLC in recent years, computational fluid dynamics (CFD) simulations have been limited in the literature. In this paper, simulation of a CLC reactor is conducted using the Eulerian approach in the commercial CFD solver ansys fluent based on a laboratory-scale experiment with a dual fluidized bed CLC reactor. The solid phase consists of a Fe-based oxygen carrier while the gaseous fuel used is syngas. The salient features of the fluidization behavior in the air reactor and fuel reactor beds representing a riser and a bubbling bed, respectively, as well as the down-comer, are accurately captured in the simulation. This work is among the few CFD simulations of a complete circulating dual fluidized bed system for CLC in 3D in the literature. It highlights the importance of 3D simulation of CLC systems and the need for more accurate empirical reaction rate data for future CLC simulations.

References

1.
Arrhenius
,
S.
,
1896
, “
On the Influence of Carbonic Acid in the Air Upon the Temperature of the Ground
,”
Philos. Mag.
,
41
(
251
), pp.
237
277
.
2.
IPCC
,
2007
, “Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R. K., and Reisinger, A. (eds.)],” IPCC, Geneva, Switzerland, pp. 104.
3.
Hong
,
J.
,
Chaudhry
,
G.
,
Brisson
,
J. G.
,
Field
,
R.
, Gazzino, M., and
Ghoniem
,
A. F.
,
2009
, “
Analysis of Oxy-Fuel Combustion Power Cycle Utilizing a Pressurized Coal Combustor
,”
Energy
,
34
(
9
), pp.
1332
1340
.
4.
Hong
,
J.
,
Chaudhry
,
G.
,
Brisson
,
J. G.
,
Field
,
R.
,
Gazzino
,
M.
, and
Ghoniem
,
A. F.
,
2009
, “
Performance of the Pressurized Oxy Fuel Combustion Power Cycle With Increasing Operating Pressure
,”
34th International Technical Conference on Clean Coal and Fuel Systems
, Clearwater, FL, May 31-June 4.
5.
Kruggel-Emden
,
H.
,
Stepanek
,
F.
, and
Munjiza
,
A.
,
2011
, “
A Study on the Role of Reaction Modeling in Multi-Phase CFD-Based Simulations of Chemical Looping Combustion
,”
Oil Gas Sci. Technol.
,
66
(
2
), pp.
313
331
.
6.
Lyngfelt
,
A.
,
Leckner
,
B.
, and
Mattisson
,
T.
,
2001
, “
A Fluidized-Bed Combustion Process With Inherent CO2 Separation: Application of Chemical-Looping Combustion
,”
Chem. Eng. Sci.
,
56
(
10
), pp.
3101
3113
.
7.
Ishida
,
M.
,
Zheng
,
D.
, and
Akehata
,
T.
,
1987
, “
Evaluation of a Chemical-Looping-Combustion Power-Generation System by Graphic Exergy Analysis
,”
Energy
,
12
(
2
), pp.
147
154
.
8.
Ishida
,
M.
,
Jin
,
H.
, and
Okamoto
,
T.
,
1996
, “
A Fundamental Study of a New Kind of Medium Material for Chemical-Looping Combustion
,”
Energy Fuels
,
10
(
4
), pp.
958
963
.
9.
Wolf
,
J.
,
Anheden
,
M.
, and
Yan
,
J.
,
2001
, “
Performance Analysis of Combined Cycles With Chemical Looping Combustion for CO2 Capture
,”
18th International Pittsburgh Coal Conference
, Newcastle, Australia, Dec 3–7.
10.
Marion
,
J. L.
,
2006
, “
Technology Options for Controlling CO2 Emissions From Fossil Fueled Power Plants
,”
5th Annual Conference on Carbon Capture and Sequestration
, Alexandria, VA, May 8–11.
11.
Andrus
,
H. E.
,
Burns
,
G.
,
Chiu
,
J. H.
,
Liljedahl
,
G. N.
,
Stromberg
,
P. T.
, and
Thibeault
,
P. R.
,
2008
, “
Hybrid Combustion–Gasification Chemical Looping Coal Power Technology Development, Phase III—Final Report
,” ALSTOM Power Inc., Windsor, CT, Report No. PPL-08-CT-25.
12.
Stevens
,
R.
,
Newby
,
R.
,
Shah
,
V.
,
Kuehn
,
N.
, and
Keairns
,
D.
,
2010
, “
Guidance for NETL's Oxy-Combustion R&D Program: Chemical Looping Combustion Reference Plant Designs and Sensitivity Studies
,” U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA, Report No. DOE/NETL-2010/1643.
13.
Mattisson
,
T.
, and
Lyngfelt
,
A.
,
2001
, “
Capture of CO2 Using Chemical-Looping Combustion
,”
1st Biennial Meeting of the Scandinavian-Nordic Section of the Combustion Institute
, Göteborg, Sweden, Apr. 18–20, pp.
163
168
.
14.
Kronberger
,
B.
,
Lôffler
,
G.
, and
Hofbauer
,
H.
,
2005
, “
Simulation of Mass and Energy Balances of a Chemical-Looping Combustion System
,”
Clean Air: Int. J. Energy Clean Environ.
,
6
(
1
), pp.
1
14
.
15.
Jerndal
,
E.
,
Mattisson
,
T.
, and
Lyngfelt
,
A.
,
2006
, “
Thermal Analysis of Chemical-Looping Combustion
,”
Chem. Eng. Res. Des.
,
84
(
9
), pp.
795
806
.
16.
Zhang
,
X.
,
Banerjee
,
S.
, and
Agarwal
,
R. K.
,
2015
, “
Validation of Chemical-Looping With Oxygen Uncoupling (CLOU) Using Cu-Based Oxygen Carrier and Comparative Study of Cu, Mn and Co Based Oxygen Carriers Using ASPEN Plus
,”
Int. J. Energy. Environ.
,
6
(
3
), pp.
247
254
.
17.
Banerjee
,
S.
, and
Agarwal
,
R. K.
,
2015
, “
Transient Reacting Flow Simulation of Spouted Fluidized Bed for Coal-Direct Chemical Looping Combustion
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
2
), p.
021016
.
18.
Hossain
,
M. M.
, and
de Lasa
,
H. I.
,
2008
, “
Chemical-Looping Combustion (CLC) for Inherent CO2 Separations—A Review
,”
Chem. Eng. Sci.
,
63
(
18
), pp.
4433
4451
.
19.
Johansson
,
M.
,
2007
, “
Screening of Oxygen-Carrier Particles Based on Iron-, Manganese-, Copper- and Nickel Oxides for Use in Chemical-Looping Technologies
,” Ph.D. dissertation, Chalmers University of Technology, Göteborg, Sweden.
20.
Abad
,
A.
,
Mattisson
,
T.
,
Lyngfelt
,
A.
, and
Johansson
,
M.
,
2007
, “
The Use of Iron Oxide as Oxygen Carrier in a Chemical-Looping Reactor
,”
Fuel
,
86
(7–8), pp.
1021
1035
.
21.
Jung
,
J.
, and
Gawmo
,
I.
,
2008
, “
Multiphase CFD-Based Models for Chemical Looping Combustion Process: Fuel Reactor Modeling
,”
Powder Technol.
,
183
(
3
), pp.
401
409
.
22.
Deng
,
Z.
,
Xiao
,
R.
,
Jin
,
B. S.
,
Song
,
Q. L.
, and
Huang
,
H.
,
2008
, “
Multiphase CFD Modeling for a Chemical Looping Combustion Process (Fuel Reactor)
,”
Chem. Eng. Technol.
,
31
(
12
), pp.
1754
1766
.
23.
Mahalatkar
,
K.
,
Kuhlman
,
J.
,
Huckaby
,
E. D.
, and
O'Brien
,
T.
,
2011
, “
Computational Fluid Dynamic Simulations of Chemical Looping Fuel Reactors Utilizing Gaseous Fuels
,”
Chem. Eng. Sci.
,
66
(
3
), pp.
469
479
.
24.
Mahalatkar
,
K.
,
Kuhlman
,
J.
,
Huckaby
,
E. D.
, and
O'Brien
,
T.
,
2011
, “
CFD Simulation of a Chemical-Looping Fuel Reactor Utilizing Solid Fuel
,”
Chem. Eng. Sci.
,
66
(
16
), pp.
3617
3627
.
25.
Shuai
,
W.
,
Guodong
,
L.
,
Huilin
,
L.
,
Juhui
,
C.
,
Yurong
,
H.
, and
Jiaxing
,
W.
,
2011
, “
Fluid Dynamic Simulation in a Chemical Looping Combustion With Two Interconnected Fluidized Beds
,”
Fuel Proc. Technol.
,
92
(
3
), pp.
385
393
.
26.
Seo
,
M.
,
Nguyen
,
T. D. B.
,
Lim
,
Y.
,
Kim
,
S.
,
Park
,
S.
,
Song
,
B.
, and
Kim
,
Y.
,
2011
, “
Solid Circulation and Loop-Seal Characteristics of a Dual Circulating Fluidized Bed: Experiments and CFD Simulation
,”
Chem. Eng. J.
,
2
, pp.
803
811
.
27.
Nguyen
,
T. D. B.
,
Seo
,
M.
,
Lim
,
Y.
,
Song
,
B.
, and
Kim
,
S.
,
2012
, “
CFD Simulation With Experiments in a Dual Circulating Fluidized Bed Gasifier
,”
Comput. Chem. Eng.
,
36
, pp.
48
56
.
28.
Ahmed
,
B.
, and
Lu
,
H.
,
2014
, “
Modeling of Chemical Looping Combustion of Methane Using a Ni-Based Oxygen Carrier
,”
Energy Fuel
,
28
, pp.
3420
3429
.
29.
Guan
,
Y.
,
Chang
,
J.
,
Zhang
,
K.
,
Wang
,
B.
, and
Sun
,
Q.
,
2014
, “
Three-Dimensional CFD Simulation of Hydrodynamics in an Interconnected Fluidized Bed for Chemical Looping Combustion
,”
Powder Technol.
,
268
, pp.
316
328
.
30.
Parker
,
J.
,
2014
, “
CFD Model for the Simulation of Chemical Looping Combustion
,”
Powder Technol.
,
265
, pp.
47
53
.
31.
Chong
,
Y. O.
,
Nicklin
,
D. J.
, and
Tait
,
P. J.
,
1986
, “
Solid Exchange Between Adjacent Fluid Beds Without Gas Mixing
,”
Powder Technol.
47
(
2
), pp.
151
156
.
32.
Fang
,
M.
, et al.,
2003
, “
Experimental Research on Solid Circulation in a Twin Fluidized Bed System
,”
Chem. Eng. J.
,
94
(
3
), pp.
171
178
.
33.
ANSYS
,
2012
, ANSYS FLUENT User's Guide, ANSYS, Inc., Canonsburg, PA.
34.
ANSYS
,
2012
, ANSYS FLUENT Theory Guide, ANSYS, Inc., Canonsburg, PA.
35.
Patil
,
D. J.
,
Annaland
,
M. V.
, and
Kuipers
,
J. A. M.
,
2004
, “
Critical Comparison of Hydrodynamic Models for Gas–Solid Fluidized Beds—Part I: Bubbling Gas–Solid Fluidized Beds Operated With a Jet
,”
Chem. Eng. Sci.
,
60
(
1
), pp.
57
72
.
36.
Patil
,
D. J.
,
Annaland
,
M. V.
, and
Kuipers
,
J. A. M.
,
2004
, “
Critical Comparison of Hydrodynamic Models for Gas–Solid Fluidized Beds—Part II: Freely Bubbling Gas–Solid Fluidized Beds
,”
Chem. Eng. Sci.
,
60
(
1
), pp.
73
84
.
37.
Lun
,
C. K. K.
,
Savage
,
S. B.
,
Jeffrey
,
D. J.
, and
Chepurniy
,
N.
,
1984
, “
Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in General Flow Field
,”
J. Fluid Mech.
,
140
, pp.
223
256
.
38.
Gidaspow
,
D.
,
1992
,
Multiphase Flow and Fluidization
,
Academic Press
,
San Diego, CA
.
39.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
, pp.
89
94
.
40.
Wen
,
C. Y.
, and
Yu
,
H. Y.
,
1966
, “
Mechanics of Fluidization
,”
Chem. Eng. Prog. Symp. Ser.
,
62
, pp.
100
111
.
41.
Gunn
,
D. J.
,
1978
, “
Transfer of Heat or Mass to Particles in Fixed and Fluidized Beds
,”
Int. J. Heat Mass Transfer
,
21
(
4
), pp.
467
476
.
42.
Mattisson
,
T.
, et al.,
2005
, “
Capture of CO2 in Coal Combustion. ECSC Coal RTD Programme Final Report
,” Chalmers University of Technology, Göteborg, Sweden, Report No. ECSC-7220-PR125.
43.
Taylor
,
G. I.
,
1954
, “
The Dispersion of Matter in Turbulent Flow Through Pipes
,”
Proc. R. Soc. London, Ser. A
,
223
(
1155
), pp.
446
448
.
You do not currently have access to this content.