Carbonate matrix acidizing is widely used in oil fields as a simple and easy method of production enhancement. However, the dissolution pattern created due to the reaction between the acid and the carbonates is a complex phenomenon. Several experimental and modeling studies have been carried out to simplify this process and design the optimum conditions for acidizing. One approach is to develop continuum models to simulate the dissolution process in the core scale. Conventional modeling approaches typically do not consider the effects of spent acid in the models. However, there are a few studies and observations on the solubility of CO2 in the CaCl2-H2O-CO2 system, which shows the possibility of formation of a separate CO2 phase during acidizing. The presence of CO2 as a separate phase affects the dominant wormhole propagation and also the dissolution regime. Moreover, the acid/rock reaction leads to the change of physical properties of the flowing fluid. Hence, neglecting the alterations in the physical properties of the moving fluid, such as density and viscosity, affects the accuracy of the models. In this study, a basic model previously introduced in the Darcy scale is developed to consider the effect of reaction products on the overall acidizing performance. A thermodynamic model is used to estimate the CO2 solubility in the spent acid. The insoluble CO2 may change the relative permeability of the reactants and influence on the optimum conditions. Furthermore, the physical properties of the fluid are estimated and updated at each step of the modeling. Consideration of the spent acid effects in the modeling can improve the modeling accuracy. The developed model has the ability to consider the effect of pressure and temperature of the medium on the optimum conditions. In addition, the developed model has shown better predictions by considering the physical changes during the dissolution.

References

1.
Daccord
,
G.
,
1987
, “
Chemical Dissolution of a Porous Medium by a Reactive Fluid
,”
Phys. Rev. Lett.
,
58
(
5
), pp.
479
–482.
2.
Gomaa
,
A. M.
, and
Nasr-El-Din
,
H. A.
,
2011
, “
Propagation of Regular HCl Acids in Carbonate Rocks: The Impact of an In Situ Gelled Acid Stage
,”
ASME J. Energy Res. Technol.
,
133
(
2
), p. 023101.
3.
Mahmoud
,
M.
, and
Nasr-El-Din
,
H.
,
2014
, “
Challenges During Shallow and Deep Carbonate Reservoirs Stimulation
,”
ASME J. Energy Res. Technol.
,
137
(
1
), p. 012902.
4.
Williams
,
B. B.
,
Gidley
,
J. L.
, and
Schechter
,
R. S.
,
1979
,
Acidizing Fundamentals
,
Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers of AIME
,
New York
.
5.
Fredd
,
C. N.
, and
Fogler
,
H. S.
,
1998
, “
Influence of Transport and Reaction on Wormhole Formation in Porous Media
,”
AIChE J.
,
44
(
9
), pp.
1933
1949
.
6.
Bazin
,
B.
,
2001
, “
From Matrix Acidizing to Acid Fracturing: A Laboratory Evaluation of Acid/Rock Interactions
,”
SPE Prod. Facil.
,
16
(01), pp.
22
29
.
7.
Fredd
,
C. N.
, and
Fogler
,
H. S.
,
1998
, “
The Kinetics of Calcite Dissolution in Acetic Acid Solutions
,”
Chem. Eng. Sci.
,
53
(
22
), pp.
3863
3874
.
8.
Golfier
,
F.
,
Zarcone
,
C.
,
Bazin
,
B.
,
Lenormand
,
R.
,
Lasseux
,
D.
, and
Quintard
,
M.
,
2002
, “
On the Ability of a Darcy-Scale Model to Capture Wormhole Formation During the Dissolution of a Porous Medium
,”
J. Fluid Mech.
,
457
, pp.
213
254
.
9.
Hofmann
,
H.
,
Babadagli
,
T.
, and
Zimmermann
,
G.
,
2014
, “
Numerical Simulation of Complex Fracture Network Development by Hydraulic Fracturing in Naturally Fractured Ultratight Formations
,”
ASME J. Energy Res. Technol.
,
136
(
4
), p. 042905.
10.
Wang
,
W.
, and
Dahi Taleghani
,
A.
,
2014
, “
Simulating Multizone Fracturing in Vertical Wells
,”
ASME J. Energy Res. Technol.
,
136
(
4
), p. 042902.
11.
Daccord
,
G.
,
Lenormand
,
R.
, and
Liétard
,
O.
,
1993
, “
Chemical Dissolution of a Porous Medium by a Reactive Fluid-I. Model for the "Wormholing" Phenomenon
,”
Chem. Eng. Sci.
,
48
(
1
), pp.
169
178
.
12.
Hung
,
K.
,
Hill
,
A.
, and
Sepehrnoori
,
K.
,
1989
, “
A Mechanistic Model of Wormhole Growth in Carbonate Matrix Acidizing and Acid Fracturing
,”
J. Pet. Technol.
,
41
(
1
), pp.
59
66
.
13.
Wang
,
Y.
,
Hill
,
A. D.
, and
Schechter
,
R. S.
,
1993
, “
The Optimum Injection Rate for Matrix Acidizing of Carbonate Formations
,”
SPE
Technical Conference and Exhibition
, Houston, TX, Oct. 3–6, Paper No. SPE-26578-MS.
14.
Buijse
,
M.
,
1997
, “
Mechanisms of Wormholing in Carbonate Acidizing
,”
SPE
International Symposium on Oilfield Chemistry
, Houston, TX, Feb. 18–21, Paper No. SPE-37283-MS, pp. 683–686.
15.
Huang
,
T.
,
Zhu
,
D.
, and
Hill
,
A.
,
1999
, “
Prediction of Wormhole Population Density in Carbonate Matrix Acidizing
,”
SPE
European Formation Damage Conference
, The Hague, The Netherlands, May 31–June 1, Paper No. SPE-54723-MS, pp. 161–167.
16.
Huang
,
T.
,
Hill
,
A.
, and
Schechter
,
R.
,
2000
, “
Reaction Rate and Fluid Loss: The Keys to Wormhole Initiation and Propagation in Carbonate Acidizing
,”
SPE J.
,
5
(03), pp.
287
292
.
17.
Daccord
,
G.
,
Touboul
,
E.
, and
Lenormand
,
R.
,
1989
, “
Carbonate Acidizing: Toward a Quantitative Model of the Wormholing Phenomenon
,”
SPE Prod. Eng.
,
4
(
1
), pp.
63
68
.
18.
Hoefner
,
M. L.
, and
Fogler
,
H. S.
,
1988
, “
Pore Evolution and Channel Formation During Flow and Reaction in Porous Media
,”
AIChE J.
,
34
(
1
), pp.
45
54
.
19.
Fredd
,
C.
, and
Fogler
,
H.
,
1999
, “
Optimum Conditions for Wormhole Formation in Carbonate Porous Media: Influence of Transport and Reaction
,”
SPE J.
,
4
(03), pp.
196
205
.
20.
Chen
,
Y.
,
Mu
,
J.
,
Chen
,
W.
,
Davis
,
D.
, and
Ortoleva
,
P.
,
1993
, “
Optimizing Matrix Acidizing for Near-Borehole Remediation Using the CIRF Reaction-Transport Simulator
,”
SPE
Gas Technology Symposium
, Calgary, AB, Canada, June 28–30, Paper No. SPE-26184-MS.
21.
Chen
,
Y.
,
Fambrough
,
J.
,
Bartko
,
K.
,
Li
,
Y.
,
Montgomery
,
C.
, and
Ortoleva
,
P.
,
1997
, “
Reaction-Transport Simulation of Matrix Acidizing and Optimal Acidizing Strategies
,”
SPE
International Symposium on Oilfield Chemistry
, Houston, TX, Feb. 18–21, Paper No. SPE-37282-MS.
22.
Liu
,
X.
,
Ormond
,
A.
,
Bartko
,
K.
,
Li
,
Y.
, and
Ortoleva
,
P.
,
1997
, “
A Geochemical Reaction-Transport Simulator for Matrix Acidizing Analysis and Design
,”
J. Pet. Sci. Eng.
,
17
(
1–2
), pp.
181
196
.
23.
Panga
,
M. K. R.
,
Balakotaiah
,
V.
, and
Ziauddin
,
M.
,
2002
, “
Modeling, Simulation and Comparison of Models for Wormhole Formation During Matrix Stimulation of Carbonates
,”
SPE
Annual Technical Conference and Exhibition
, San Antonio, TX, Sept. 29–Oct. 2, Paper No. SPE-77369-MS.
24.
Panga
,
M. K. R.
,
Ziauddin
,
M.
,
Gandikota
,
R.
, and
Balakotaiah
,
V.
,
2004
, “
A New Model for Predicting Wormhole Structure and Formation in Acid Stimulation of Carbonates
,”
SPE
International Symposium and Exhibition on Formation Damage Control
, Lafayette, LA, Feb. 18–20, Paper No. SPE-86517-MS.
25.
Panga
,
M.
,
Ziauddin
,
M.
, and
Balakotaiah
,
V.
,
2005
, “
Two-Scale Continuum Model for Simulation of Wormholes in Carbonate Acidization
,”
AIChE J.
,
51
(
12
), pp.
3231
3248
.
26.
Kalia
,
N.
, and
Balakotaiah
,
V.
,
2007
, “
Modeling and Analysis of Wormhole Formation in Reactive Dissolution of Carbonate Rocks
,”
Chem. Eng. Sci.
,
62
(
4
), pp.
919
928
.
27.
Kalia
,
N.
, and
Balakotaiah
,
V.
,
2009
, “
Effect of Medium Heterogeneities on Reactive Dissolution of Carbonates
,”
Chem. Eng. Sci.
,
64
(
2
), pp.
376
390
.
28.
Shaughnessy
,
C. M.
, and
Kunze
,
K. R.
,
1981
, “
Understanding Sandstone Acidizing Leads to Improved Field Practices
,”
J. Pet. Technol.
,
33
(
7
), pp.
1196
1202
.
29.
Pournik
,
M.
,
Li
,
L.
,
Smith
,
B. T.
, and
Nasr-El-Din
,
H. A.
,
2013
, “
Effect of Acid Spending on Etching and Acid-Fracture Conductivity
,”
SPE Prod. Oper.
,
28
(
1
), pp.
46
54
.
30.
Mohamed
,
I. M.
,
He
,
J.
, and
Nasr-El-Din
,
H. A.
,
2012
, “
Experimental Analysis of CO2 Injection on Permeability of Vuggy Carbonate Aquifers
,”
ASME J. Energy Res. Technol.
,
135
(
1
), p. 013301.
31.
Olabode
,
A.
, and
Radonjic
,
M.
,
2014
, “
Shale Caprock/Acidic Brine Interaction in Underground CO2 Storage
,”
ASME J. Energy Res. Technol.
,
136
(
4
), p. 042901.
32.
Bastami
,
A.
,
Allahgholi
,
M.
, and
Pourafshary
,
P.
,
2014
, “
Experimental and Modelling Study of the Solubility of CO2 in Various CaCl2 Solutions at Different Temperatures and Pressures
,”
Pet. Sci.
,
11
(
4
), pp.
569
577
.
33.
Bachu
,
S.
, and
Adams
,
J.
,
2003
, “
Sequestration of CO2 in Geological Media in Response to Climate Change: Capacity of Deep Saline Aquifers to Sequester CO2 in Solution
,”
Energy Convers. Manage.
,
44
(
20
), pp.
3151
3175
.
34.
Garcia
,
J. E.
,
2001
, “
Density of Aqueous Solutions of CO2
,”
Lawrence Berkeley National Laboratory
, Berkeley, CA.
35.
Kemp
,
N. P.
,
Thomas
,
D. C.
,
Atkinson
,
G.
, and
Atkinson
,
B. L.
,
1989
, “
Density Modeling for Brines as a Function of Compositions Temperature and Pressure
,”
SPE Prod. Eng.
,
4
(04), pp.
394
400
.
36.
Islam
,
A. W.
, and
Carlson
,
E. S.
,
2012
, “
Viscosity Models and Effects of Dissolved CO2
,”
Energy Fuels
,
26
(
8
), pp.
5330
5336
.
37.
Mao
,
S.
, and
Duan
,
Z.
,
2009
, “
The Viscosity of Aqueous Alkali-Chloride Solutions up to 623 K, 1000 bar, and High Ionic Strength
,”
Int. J. Thermophys.
,
30
(
5
), pp.
1510
1523
.
38.
Bennion
,
D. B.
, and
Bachu
,
S.
,
2006
, “
The Impact of Interfacial Tension and Pore Size Distribution/Capillary Pressure Character on CO2 Relative Permeability at Reservoir Conditions in CO2-Brine Systems
,”
SPE/DOE
Symposium on Improved Oil Recovery
, Tulsa, OK, Apr. 22–26, Paper No. SPE-99325-MS.
39.
Perrin
,
J. C.
,
Krause
,
M.
,
Kuo
,
C. W.
,
Miljkovic
,
L.
,
Charoba
,
E.
, and
Benson
,
S. M.
,
2009
, “
Core-Scale Experimental Study of Relative Permeability Properties of CO2 and Brine in Reservoir Rocks
,”
Energy Procedia
,
1
(
1
), pp.
3515
3522
.
40.
Izgec
,
O.
,
Zhu
,
D.
, and
Hill
,
A. D.
,
2010
, “
Numerical and Experimental Investigation of Acid Wormholing During Acidization of Vuggy Carbonate Rocks
,”
J. Pet. Sci. Eng.
,
74
(
1–2
), pp.
51
66
.
41.
Buijse
,
M.
,
de Boer
,
P.
,
Breukel
,
B.
, and
Burgos
,
G.
,
2004
, “
Organic Acids in Carbonate Acidizing
,”
SPE Prod. Facil.
,
19
(03), pp.
128
134
.
42.
Roberts
,
L. D.
, and
Guin
,
J.
,
1975
, “
A New Method for Predicting Acid Penetration Distance
,”
SPE J.
,
15
(04), pp.
277
286
.
43.
Cussler
,
E. L.
,
2009
,
Diffusion: Mass Transfer in Fluid Systems
,
Cambridge University
Press, Cambridge, UK.
44.
Perry
,
R. H.
, and
Green
,
D. W.
,
2008
,
Perry's Chemical Engineers' Handbook
, 8th ed.,
McGraw-Hill
,
New York
.
45.
Panga
,
M. K. R.
,
2003
, “
Multiscale Transport and Reaction: Two Case Studies
,” Ph.D. thesis, University of Houston, Houston, TX.
You do not currently have access to this content.