There are many ways to integrate reservoir and production system simulations to forecast production, in a single model (implicit) or in coupled models (explicit). Explicit coupling, a simple and flexible coupling method, has the advantage of using commonly available commercial software to integrate reservoir and production systems simulations. However, explicit coupling may produce large deviations as the inflow performance relationship (IPR) curve, which combines well pressure and production and injection rates, can only be evaluated or amended at the beginning of a time-step. As the IPR curve changes during a time-step, it may be necessary to correct unstable results for well pressure and rates. Using a previously proposed IPR correction method, numerical stability was improved, reducing deviations during advancing the time step. A formula was created to support the correction of IPR curve. The methodology was tested using cases with known responses for pressures and flow rates, for a predetermined production strategy from the benchmark case UNISIM-I-D. Deviations were reduced to near zero when compared with uncoupled and decoupled methodologies to integrate reservoir with production system simulations.

References

1.
Camponogara
,
E.
, and
Nakashima
,
P. H. R.
,
2006
, “
Optimal Allocation of Lift-Gas Rates Under Multiple Facility Constraints: A Mixed Integer Linear Programming Approach
,”
ASME J. Energy Resour. Technol.
,
128
(
4
), pp.
280
289
.
2.
Romero
,
O. J.
, and
Hupp
,
A.
,
2013
, “
Subsea Electrical Submersible Pump Significance in Petroleum Offshore Production
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012902
.
3.
Mamghaderi
,
A.
,
Bastami
,
A.
, and
Pourafshary
,
P.
,
2012
, “
Optimization of Waterflooding Performance in a Layered Reservoir Using a Combination of Capacitance-Resistive Model and Genetic Algorithm Method
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013102
.
4.
Coats
,
B. K.
,
Fleming
,
G. C.
,
Watts
,
J. W.
,
Rame
,
M.
, and
Shiralkar
,
G. S.
,
2004
, “
A Generalized Wellbore and Surface Facility Model, Fully Coupled to a Reservoir Simulator
,”
SPE Reservoir Eval. Eng.
,
7
(
2
), pp.
132
142
.
5.
Zapata
,
V. J.
,
Brummett
,
W. M.
,
Osborne
,
M. E.
, and
Van Nispenl
,
D. J.
,
2001
, “
Advances in Tightly Coupled Reservoir/Wellbore/Surface-Network Simulation
,”
SPE Reservoir Eval. Eng.
,
4
(
2
), pp.
114
120
.
6.
Ghorayeb
,
K.
,
Holmes
,
J.
,
Torrens
,
R.
, and
Grewal
,
B.
,
2003
, “
A General Purpose Controller for Coupling Multiple Reservoir Simulations and Surface Facility Networks
,”
SPE Reservoir Simulation Symposium
, Houston, TX, Feb. 3–5,
SPE
Paper No. 79702.
7.
Bento
,
D. F.
,
2010
, “Influência De Restrições De Produção Na Definição Da Estratégia De Explotação De Campos De Petróleo,” M.Sc. dissertation, University of Campinas, Campinas, Brazil.
8.
Al-Mutairi
,
S. M.
,
Hayder
,
E. M.
,
Al-Shammari
,
A. T.
,
Al-Jama
,
N. A.
, and
Munoz
,
A.
,
2010
, “
A Study of Coupling Surface Network to Reservoir Simulation Model in a Large Middle East Field
,”
SPE North Africa Conference and Exhibition
, Cairo, Egypt, Feb. 14–17,
SPE
Paper No. 127976.
9.
Hayder
,
M. E.
,
Putra
,
S. A.
, and
Shammari
,
A. T.
,
2011
, “
Coupled Facility and Reservoir Simulations to Optimize Strategies for a Mature Field
,”
SPE Reservoir Characterization and Simulation Conference and Exhibition
, Abu Dhabi, United Arab Emirates, Oct. 9–11,
SPE
Paper No. 147994.
10.
Rotondi
,
M.
,
Cominelli
,
A.
,
Di Giorgio
,
C.
,
Rossi
,
R.
,
Vignati
,
E.
, and
Caraati
,
B.
,
2008
, “
The Benefits of Integrated Asset Modeling: Lesson Learned From Field Cases
,”
Europec/EAGE Annual Conference and Exhibition
, Rome, Italy, June 9–12,
SPE
Paper No. 113831.
11.
Vera
,
R. A. R.
,
Solano
,
K.
,
Guevara
,
S.
,
Velezquez
,
M.
, and
Saputelli
,
L. A.
,
2007
, “
Integration of Subsurface, Surface, and Economics Under Uncertainty in Orocual Field
,”
SPE Latin American & Caribbean Petroleum Engineering Conference
, Buenos Aires, Argentina, Apr. 15–18,
SPE
Paper No. 107259.
12.
Cao
,
H.
,
Samier
,
P.
,
Kalunga
,
H. M.
,
Detige
,
E.
, and
Obi
,
E.
,
2015
, “
A Fully Coupled Network Model, Practical Issues and Comprehensive Comparison With Other Integrated Models on Field Cases
,”
SPE Reservoir Simulation Symposium
, Houston, TX, Feb. 23–25,
SPE
Paper No. 173251.
13.
Schiozer
,
D. J.
,
1994
, “Simultaneous Simulation of Reservoir and Surface Facilities,”
Ph.D. dissertation
, Stanford University, Stanford, CA.https://searchworks.stanford.edu/view/2861882
14.
Güyagüler
,
B.
,
Zapata
,
V. J.
,
Cao
,
H.
,
Stamati
,
H. F.
, and
Holes
,
J. A.
,
2011
, “
Near-Well Subdomain Simulations for Accurate Inflow Performance Relationship Calculation to Improve Stability of Reservoir-Network Coupling
,”
SPE Reservoir Eval. Eng.
,
14
(
5
), pp.
634
643
.
15.
Liang
,
J.
, and
Rubin
,
B.
,
2014
, “
A Semi-Implicit Approach for Integrated Reservoir and Surface-Network Simulation
,”
SPE Reservoir Eval. Eng.
,
17
(
4
), pp. 559–571.
16.
Middya
,
U.
, and
Dogru
,
A. H.
,
2008
, “
Computation of Average Well Drainage Pressure for a Parallel Reservoir Simulator
,”
SPE Saudi Arabia Section Technical Symposium
, Al-Khobar, Saudi Arabia, May 10–12,
SPE
Paper No. 120816.
17.
Hohendorff Filho
,
J. C. V.
, and
Schiozer
,
D. J.
,
2014
, “
Evaluation on Explicit Coupling Between Reservoir Simulators and Production System
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p. 044501.
18.
Cotrim
,
H. A.
,
Hohendorff Filho
,
J. C. V.
, and
Schiozer
,
D. J.
,
2011
, “
Production Optimization Considering Interaction Between Reservoirs and Constrained Surface Facilities
,”
SPE Reservoir Characterization and Simulation Conference and Exhibition
, Abu Dhabi, United Arab Emirates, Oct. 9–11,
SPE
Paper No. 148334.
19.
Hohendorff Filho
,
J. C. V.
, and
Schiozer
,
D. J.
,
2016
, “
A Correction Methodology for Explicit Coupling Between Reservoir and Production System Simulators
,”
XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
, Brasília, Brazil, Nov. 6–9, Paper No. CILAMCE2016-0781.http://periodicos.unb.br/index.php/ripe/article/viewFile/24347/17420
20.
Ertekin
,
T.
,
Abou-Hassem
,
J. H.
, and
King
,
G. R.
,
2009
,
Basic Applied Reservoir Simulation
,
Henry L. Doherty Memorial Fund of AIME, SPE
,
Richardson, TX
.
21.
Avansi
,
G. D.
, and
Schiozer
,
D. J.
,
2015
, “
UNISIM-I: Synthetic Model for Reservoir Development and Management Applications
,”
Int. J. Model. Simul. Pet. Ind.
,
9
(1), pp.
21
30
.http://www.ijmspi.org/ojs/index.php/ijmspi/article/download/152/85
22.
Schiozer
,
D. J.
,
Santos
,
A. A. S.
, and
Drummond
,
P. S.
,
2015
, “Integrated Model Based Decision Analysis in Twelve Steps Applied to Petroleum Fields Development and Management,” EUROPEC, Madrid, Spain, June 1–4,
SPE
Paper No. 174370.
23.
Gaspar
,
A. T.
,
Maschio
,
C.
,
Santos
,
A. A.
,
Avansi
,
G. D.
,
Hohendorff Filho
,
J. C. V.
, and
Schiozer
,
D. J.
, 2013, “
UNISIM-I-D: Case Study for Selection of Production Strategy
,” UNISIM, Campinas, SP/Brazil, accessed July 14, 2016, http://www.unisim.cepetro.unicamp.br/benchmarks/br/unisim-i/unisim-i-d
24.
Flores
,
J. G.
,
Sarica
,
C.
,
Chen
,
T. X.
, and
Brill
,
J. P.
,
1998
, “
Investigation of Holdup and Pressure Drop Behavior for Oil-Water Flow in Vertical and Deviated Wells
,”
ASME J. Energy Resour. Technol.
,
120
(
1
), pp.
8
14
.
25.
Furukawa
,
H.
,
Shoham
,
O.
, and
Brill
,
J. P.
,
1986
, “
Predicting Compositional Two-Phase Flow Behavior in Pipelines
,”
ASME J. Energy Resour. Technol.
,
108
(
3
), pp.
207
210
.
26.
Sukarno
,
P.
,
Saepudin
,
D.
,
Dewi
,
S.
,
Soewono
,
E.
,
Sidarto
,
K. A.
, and
Gunawan
,
A. Y.
,
2009
, “
Optimization of Gas Injection Allocation in a Dual Gas Lift Well System
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), p.
033101
.
You do not currently have access to this content.