Chemical composition and thermodynamics properties of different thermal plasmas are calculated in a wide range of temperatures (300–100,000 K) and pressures (10−6–100 atm). The calculation is performed in dissociation and ionization temperature ranges using statistical thermodynamic modeling. The thermodynamic properties considered in this study are enthalpy, entropy, Gibbs free energy, specific heat at constant pressure, specific heat ratio, speed of sound, mean molar mass, and degree of ionization. The calculations have been done for seven pure plasmas such as hydrogen, helium, carbon, nitrogen, oxygen, neon, and argon. In this study, the Debye–Huckel cutoff criterion in conjunction with the Griem’s self-consistent model is applied for terminating the electronic partition function series and to calculate the reduction of the ionization potential. The Rydberg and Ritz extrapolation laws have been used for energy levels which are not observed in tabulated data. Two different methods called complete chemical equilibrium and progressive methods are presented to find the composition of available species. The calculated pure plasma properties are then presented as functions of temperature and pressure, in terms of a new set of thermodynamically self-consistent correlations for efficient use in computational fluid dynamic (CFD) simulations. The results have been shown excellent agreement with literature. The results from pure plasmas as a reliable reference source in conjunction with an alternative method are then used to calculate the thermodynamic properties of any arbitrary plasma mixtures (mixed plasmas) having elemental atoms of H, He, C, N, O, Ne, and Ar in their chemical structure.

References

1.
Gilmore
,
F. R.
,
1955
, “
Equilibrium Composition and Thermodynamic Properties of Air to 24,000°K
,” U.S. Air Force, The Rand Corporation, Santa Monica, CA, Report No.
RM-1543
.
2.
Hansen
,
C. F.
, and
Heims
,
S. P.
,
1958
, “
A Review of the Thermodynamic, Transport and Chemical Reaction Rate Properties of High Temperature Air
,”
Ames Research Center
, Moffett Field, CA, Report No.
TN-4359
.
3.
Moeckel
,
W. E.
, and
Wetson
,
C. K.
,
1958
, “
Composition and Thermodynamic Properties of Air in Chemical Equlibrium
,”
Lewis Flight Propulsion Laboratory
, Cleveland, OH, Report No.
TN-4265
.
4.
Hansen
,
C. F.
,
1959
, “
Thermodynamic and Transport Properties of High Temperature Air
,” Armed Services Technical Information Agency, Arlington, VA, Report No.
323
.
5.
Hansen
,
C. F.
,
1960
, “
Approximation for the Thermodynamic and Transport Properties of High Temperature Air
,”
National Aeronautics and Space Administration (NASA)
, Washington, DC, Report No. R-50.
6.
Allison
,
D. O.
,
1966
, “
Calculation of Thermodynamic Properties of Arbitrary Gas Mixtures With Modified Vibrational-Rotational Corrections
,”
NASA Langley Research Center
, Hampton, VA, Report No.
D-3538
.
7.
Hilsenrath
,
J.
, and
Klein
,
M.
,
1965
, “
Tables of Thermodynamic Properties of Air in Chemical Equilibrium Including Second Virial Corrections From 1500 K to 15,000 K
,” U.S. Air Force, Fort Belvoir, VA, No.
AEDC TDR 63-161
.
8.
Capitelli
,
M.
,
Colonna
,
G.
, and
Gorse
,
C.
,
1995
, “
Thermodynamic Properties of High-Temperature Air Components
,”
Molecular Physics and Hypersonic Flows
, Vol. 482, Springer, Dordrecht, The Netherlands, pp.
293
301
.
9.
Capitelli
,
M.
,
Colonna
,
G.
, and
Gorse
,
C.
,
2000
, “
Transport Properties of High Temperature Air in Local Thermodynamic Equilibrium
,”
Eur. Phys. J. D
,
11
(
2
), pp.
279
289
.
10.
Capitelli
,
M.
,
Colonna
,
G.
, and
Dangola
,
A.
,
2001
, “
Thermodynamic Properties and Transport Coefficients of High Temperature Air Plasma
,” Pulsed Power Plasma Science (
PPPS
), Las Vegas, NV, June 17–22, pp.
694
697
.
11.
Capitelli
,
M.
,
Longo
,
S.
,
Petrella
,
G.
, and
Giordano
,
D.
,
2005
, “
Equivalent Potential Functions to Calculate Thermodynamic Equilibria
,”
Plasma Chem. Plasma Process.
,
25
(
6
), pp.
659
675
.
12.
D'Angola
,
A.
,
Colonna
,
G.
,
Gorse
,
C.
, and
Capitelli
,
M.
,
2007
, “
Thermodynamic and Transport Properties in Equilibrium Air Plasmas in a Wide Pressure and Temperature Range
,”
Eur. Phys. J. D
,
46
(
1
), pp.
129
150
.
13.
Bruno
,
D.
,
Capitelli
,
M.
,
Catalfamo
,
C.
, and
Giordano
,
D.
,
2011
, “
Transport Properties of High-Temperature Air in a Magnetic Field
,”
Phys. Plasmas
,
18
(
1
), p.
12308
.
14.
Patch
,
R. W.
, and
McBride
,
B. J.
,
1958
, “
Partition Functions and Thermodynamic Properties to High Temperatures for H3+ and H2+
,” National Aeronautics and Space Administration (NASA), Washington, DC, Report No.
D-4523
.
15.
Rosenbaum
,
B. M.
, and
Levitt
,
L.
,
1962
, “
Thermodynamic Properties of Hydrogen From Room Temperature to 100,000 K
,” Defense Technical Information Center, Fort Belvoir, VA, Report No.
TN-1107
.
16.
Kubin
,
R. F.
, and
Presley
,
L. L.
,
1964
, “
Thermodynamic Properties and Mollier Chart for Hydrogen From 300 K to 20,000 K
,” National Aeronautics and Space Administration (NASA), Washington, DC, Report No. SP-3002.
17.
Askari
,
O.
,
Moghaddas
,
A.
,
Alholm
,
A.
,
Vein
,
K.
,
Alhazmi
,
B.
, and
Metghalchi
,
H.
,
2016
, “
Laminar Burning Speed Measurement and Flame Instability Study of H2/CO/Air Mixtures at High Temperatures and Pressures Using a Novel Multi-Shell Model
,”
Combust. Flames
,
168
, pp.
20
31
.
18.
Askari
,
O.
,
Vien
,
K.
,
Wang
,
Z.
,
Sirio
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Exhaust Gas Recirculation Effects on Flame Structure and Laminar Burning Speeds of H2/CO/Air Flames at High Pressures and Temperatures
,”
Appl. Energy
,
179
, pp.
451
462
.
19.
Lick
,
W. J.
, and
Emmons
,
H. W.
,
1962
,
Thermodynamic Properties of Helium to 50,000 K
,
Harvard University Press
,
Cambridge, MA
.
20.
Drellishak
,
K. S.
,
Knopp
,
C. F.
, and
Cambel
,
A. B.
,
1963
, “
Partition Functions and Thermodynamic Properties of Argon Plasma
,”
Phys. Fluids
,
6
(
9
), p.
1280
.
21.
Pateyron
,
B.
,
Elchinger
,
M. F.
,
Delluc
,
G.
, and
Fauchais
,
P.
,
1992
, “
Thermodynamic and Transport Properties of Ar–H2O and Ar–He Plasma Gases Used for Spraying at Atmospheric Pressure—I: Properties of the Mixtures
,”
Plasma Chem. Plasma Process.
,
12
(
4
), pp.
421
448
.
22.
Janisson
,
S.
,
Vardelle
,
A.
,
Coudert
,
J. F.
,
Meillot
,
E.
,
Pateyron
,
B.
, and
Fauchais
,
P.
,
1999
, “
Plasma Spraying Using Ar–He–H2 Gas Mixtures
,”
J. Therm. Spray Technol.
,
8
(
4
), pp.
545
552
.
23.
Amakawa
,
T.
,
Iwata
,
M.
, and
Adachi
,
K.
,
2002
, “
Thermodynamic and Transport Properties of Argon-Alumina Mixture
,”
Electr. Eng. Jpn.
,
141
(
4
), pp.
1
8
.
24.
Nelson
,
F.
,
1971
, “
Thermodynamic Properties of Hydrogen-Helium Plasmas
,” University of Missouri-Rolla, Rolla, MO, Report No.
NASA CR-1861
.
25.
Al-Mamun
,
S. A.
,
Tanaka
,
Y.
, and
Uesugi
,
Y.
,
2009
, “
Observation of Non-Chemical Equilibrium Effect on Ar–CO2–H2 Thermal Plasma Model by Changing Pressure
,”
Thin Solid Films
,
518
(
3
), pp.
943
951
.
26.
Askari
,
O.
,
Beretta
,
G. P.
,
Eisazadeh-Far
,
K.
, and
Metghalchi
,
H.
,
2016
, “
On the Thermodynamic Properties of Thermal Plasma in the Flame Kernel of Hydrocarbon/Air Premixed Gases
,”
Eur. Phys. J. D
,
70
, p. 159.
27.
Griem
,
H. R.
,
1962
, “
High-Density Correlations in Plasma Spectroscopy
,”
Phys. Rev.
,
128
(
3
), pp.
997
1003
.
28.
White
,
W. B.
,
Johnson
,
S. M.
, and
Dantzig
,
G. B.
,
1958
, “
Chemical Equilibrium in Complex Mixtures
,”
J. Chem. Phys.
,
28
(
5
), pp.
751
755
.
29.
Gordon
,
S.
, and
Mcbride
,
B. J.
,
1994
, “
Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications—Part 1: Analysis
,” NASA Lewis Research Center, Cleveland, OH, Report No.
RP-1311
.
30.
Eisazadeh-Far
,
K.
,
Metghalchi
,
H.
, and
Keck
,
J. C.
,
2011
, “
Thermodynamic Properties of Ionized Gases at High Temperatures
,”
ASME J. Energy Resour. Technol.
,
133
(
2
), p.
022201
.
31.
Gyftopoulos
,
E. P.
, and
Beretta
,
G. P.
,
2005
,
Thermodynamics: Foundations and Applications
,
Dover Publications
,
Mineola, NY
.
32.
Mackenzie
,
F. T.
, and
Mackenzie
,
J. A.
,
2010
,
Our Changing Planet: An Introduction to Earth System Science and Global Environmental Change
, 4th ed.,
Prentice Hall
, Upper Saddle River, NJ.
33.
Fay
,
J. A.
,
1965
,
Molecular Thermodynamic
,
Addison-Wesley
, Boston,
MA
.
34.
Griem
,
H. R.
,
1964
,
Principle of Plasma Spectroscopy
,
McGraw-Hill
, Livermore, CA.
35.
Cooper
,
J.
,
1966
, “
Plasma Spectroscopy
,”
Rep. Prog. Phys.
,
35
, pp.
34
130
.
36.
Moore
,
C. E.
,
1971
, “
Atomic Energy Levels
,” U.S. Department of Commerce, National Bureau of Standards, Washington, DC, Standard No. NSRDS-NBS 35.
37.
NIST, 2017, “Atomic Spectra Database,” National Institute of Standards and Technology, Gaithersburg, MD, accessed Sept. 15, 2017, http://www.nist.gov/pml/data/asd.cfm
38.
Kuhn
,
H. G.
,
1962
,
Atomic Spectra
,
Academic Press
,
New York
.
39.
Colombo
,
V.
,
Ghedini
,
E.
, and
Sanibondi
,
P.
,
2008
, “
Thermodynamic and Transport Properties in Non-Equilibrium Argon, Oxygen and Nitrogen Thermal Plasmas
,”
Prog. Nucl. Energy
,
50
(
8
), pp.
921
933
.
40.
Zel'dovich
,
Y. B.
,
Raizer
,
Y. P.
,
Hayes
,
W. D.
, and
Probstein
,
R. F.
,
1966
,
Physics of Shock Waves and High Temperature Hydrodynamics Phenomena
,
Academic Press
,
New York
.
41.
Capitelli
,
M.
, and
Varracchio
,
E. F.
,
1977
, “
Thermodynamic Properties of Ar–H2 Plasmas
,”
Rev. Int. Htes Temp. Et. Refract.
,
14
, pp.
195
200
.
42.
Sevast'yanov
,
R. M.
, and
Chernyavskaya
,
R. A.
,
1986
, “
Virial Coefficients of Nitrogen, Oxygen, and Air at Temperatures From 75 to 2500
,”
J. Eng. Phys.
,
51
(
1
), pp.
851
854
.
43.
MathWorks, 2013, “Gauss Hypergeometric Function,” The MathWorks, Inc., Natick, MA, accessed Sept. 15, 2017, http://www.mathworks.com/matlabcentral/fileexchange/43865-gauss-hypergeometric-function/content/hyp2f1mex/hyp2f1.m
44.
Askari
,
O.
,
Metghalchi
,
H.
,
Moghaddas
,
A.
,
Hannani
,
S. K.
,
Ebrahimi
,
R.
,
Kazemzadeh Hannani
,
S.
,
Moghaddas
,
A.
,
Ebrahimi
,
R.
, and
Hemmati
,
H.
,
2013
, “
Fundamental Study of Spray and Partially Premixed Combustion of Methane/Air Mixture
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021001
.
45.
Askari
,
O.
,
Metghalchi
,
H.
,
Kazemzadeh Hannani
,
S.
,
Hemmati
,
H.
, and
Ebrahimi
,
R.
,
2014
, “
Lean Partially Premixed Combustion Investigation of Methane Direct-Injection Under Different Characteristic Parameters
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022202
.
46.
Askari
,
O.
,
Wang
,
Z.
,
Vien
,
K.
,
Sirio
,
M.
, and
Metghalchi
,
H.
,
2017
, “
On the Flame Stability and Laminar Burning Speeds of Syngas/O2/He Premixed Flame
,”
J. Fuel
,
190
, pp.
90
103
.
47.
Askari
,
O.
,
Elia
,
M.
,
Ferrari
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Cell Formation Effect on the Burning Speed and Flame Front Area of Synthetic Gas (Syngas) at High Pressures and Temperatures
,”
J. Appl. Energy
,
189
, pp. 568–577.
48.
Yu
,
G.
,
Askari
,
O.
,
Hadi
,
F.
,
Wang
,
Z.
,
Metghalchi
,
H.
,
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2017
, “
Theoretical Prediction of Laminar Burning Speed and Ignition Delay Time of Gas-to-Liquid Fuel
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022202
.
49.
Askari
,
O.
,
Elia
,
M.
,
Ferrari
,
M.
, and
Metghalchi
,
H.
,
2017
, “
Auto-Ignition Characteristics Study of Gas-to-Liquid Fuel at High Pressures and Low Temperatures
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012204
.
50.
Yu
,
G.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2017
, “
Theoretical Prediction of the Effect of Blending JP-8 With Syngas on the Ignition Delay Time and Laminar Burning Speed
,”
ASME J. Energy Resour. Technol.
,
140
(1), p. 012204.
51.
Cressault
,
Y.
,
Gleizes
,
A.
, and
Riquel
,
G.
,
2012
, “
Properties of Air–Aluminum Thermal Plasmas
,”
J. Phys. D.
,
45
(
26
), p. 265202.
52.
Bottin
,
B. B.
,
2000
, “
Thermodynamic Properties of Arbitrary Perfect Gas Mixtures at Low Pressures and High Temperatures
,”
Prog. Aerosp. Sci.
,
36
(
7
), pp.
547
579
.
You do not currently have access to this content.