In the field of combustion, a special attention was given lately especially to the search for new, greener and more efficient fuels. Among them, hydrogen is intensely studied worldwide as a possible alternative fuel since new ways for producing and transporting it developed lately. Different studies are trying to confirm the possibility of the hydrogen transport using the existing natural gas distribution network, by mixing the two gases. Because the properties of the new mixture influence the combustion parameters, using the existing equipment would face new problems, like the risk of flashback, the effects of higher temperatures, and the modification of the flame front. Hence, new solutions are needed. In this context, this paper presents a newly developed and patented type of injector, designated for the combustion of the premixed hydrogen–methane fuel in various proportions. Based on the characteristics and dimensions of an existing combustion chamber of a gas turbine, different types of injectors were numerically simulated and compared. After the analysis of the results, the preliminary conclusions lead to a first swirl injector made from titanium alloy. The new type of swirled injector was tested on a cheap, simplified low pressure rig, designed to have similar dimensions to the initial combustion chamber, for preliminary validation of the main characteristics and of the stability of the new injector. The experiments indicated good lean blowout characteristics, and the promising results are encouraging for more future tests on a complex experimental setup, for optimizing the final solution.

References

1.
Trilling
,
M.
,
2013
, “Decreasing Dependency on Fossil Fuels,” EU Parliament, Brussels, Belgium, accessed Feb. 14, 2018, http://www.europarl.europa.eu/document/activities/cont/201304/20130425ATT65196/20130425ATT65196EN.pdf
2.
Alzahrani
,
F. M.
,
Sanusi
,
Y. S.
, Vogiatzaki, K., Ghoniem, A. F., Habib, M. A., and Mokheimer, E. M. A.,
2015
, “
Evaluation of the Accuracy of Selected Syngas Chemical Mechanisms
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042201
.
3.
Koytsoumpa
,
E.-I.
,
Bergins
,
C.
, Buddenberg, B., Wu, S., Sigurbjornsson, O., Tran, K. C., and Kakaras, E.,
2016
, “
The Challenge of Energy Storage in Europe: Focus on Power to Fuel
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042002
.
4.
McClaine
,
A. W.
,
Brown
,
K.
, and
Bowen
,
D. D. G.
,
2015
, “
Magnesium Hydride Slurry: A Better Answer to Hydrogen Storage
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
061201
.
5.
Gahleitner, G., 2013, “
Hydrogen From Renewable Electricity: An International Review of Power-to-Gas Pilot Plants for Stationary Applications
,”
Int. J. Hydrogen Energy
,
38
(5), pp. 2039–2061.
6.
Stein-Brzozowska
,
G.
,
Bergins
,
C.
, Kukoski, A., Wu, S., Agraniotis, M., and Kakaras, E.,
2016
, “
The Current Trends in Conventional Power Plant Technology on Two Continents From the Perspective of Engineering, Procurement, and Construction Contractor and Original Equipment Manufacturer
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
044501
.
7.
Andersson, M., Larfeldt, J., and Larsson, A., 2013, “
Co-Firing With Hydrogen in Industrial Gas Turbines
,” Swedish Gas Technology Centre (SGC), Malmö, Sweden, Report No.
2013:256
.
8.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge, UK
.
9.
Boxx
,
I.
,
Arndt
,
C. M.
,
Carter
,
C. D.
, and
Meier
,
W.
,
2016
, “
High-Speed Laser Diagnostics for the Study of Flame Dynamics in a Lean Premixed Gas Turbine Model Combustor
,”
Exp. Fluids
,
52
(
3
), pp.
555
567
.
10.
Ibrahim
,
A. S.
, and
Ahmed
,
S. F.
,
2015
, “
Measurements of Laminar Flame Speeds of Alternative Gaseous Fuel Mixtures
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032209
.
11.
Yu
,
G.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2017
, “
Theoretical Prediction of the Effect of Blending JP-8 With Syngas on the Ignition Delay Time and Laminar Burning Speed
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012204
.
12.
Langan
,
K.
,
2010
, “A Computational Study of Two Dimensional Laminar Premixed Combustion of Methane and Some Biofuels,”
M.S. thesis
, University of Iowa, Iowa City, IA.
13.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
,
2005
, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
73
80
.
14.
Drell
,
I. L.
, and
Belles
,
F. E.
,
1957
, “Survey of Hydrogen Combustion Properties,” National Advisory Committee for Aeronautics, Washington DC, Supersedes NACA Research Memorandum E57D24, NACA Annual Report No.
NACA-TR-1383
.
15.
Wu
,
J.
,
Brown
,
P.
,
Diakunchak
,
I.
, and
Gulati
,
A.
,
2007
, “Advanced Gas Turbine Combustion System Development for High Hydrogen Fuels,”
ASME
Paper No. GT2007-28337.
16.
Cozzi
,
F.
, and
Coghe
,
A.
,
2006
, “
Behavior of Hydrogen-Enriched Non-Premixed Swirled Natural Gas Flames
,”
Int. J. Hydrogen Energy
,
31
(
6
), pp.
669
677
.
17.
Fleck, J. M., Griebel, P., Steinberg, A. M., Arndt, C. M., and Aigner, M., 2013, “
Auto-Ignition and Flame Stabilization of Hydrogen/Natural Gas/Nitrogen Jets in a Vitiated Cross-Flow at Elevated Pressure
,”
Int. J. Hydrogen Energy
,
38
(36), pp. 16441–16452.
18.
Van den Schoor
,
F.
,
Verplaetsen
,
F.
, and
Berghmans
,
J.
,
2008
, “
Calculation of the Upper Flammability Limit of Methane/Air Mixtures at Elevated Pressures and Temperatures
,”
J. Hazard. Mater.
,
153
(
3
), pp.
1301
1307
.
19.
Tuncer
,
O.
,
Acharya
,
S.
, and
Uhm
,
J. H.
,
2007
, “Dynamics, Nox and Flashback Characteristics of Confined Pre-Mixed Hydrogen Enriched Methane Flames,”
ASME
Paper No. GT2007-28158.
20.
Sepman, A. V., Mokhov, A. V., and Levinsky, H. B., 2011, “
The Effects of Hydrogen Addition on NO Formation in Atmospheric-Pressure, Fuel-Rich-Premixed, Burner-Stabilized Methane, Ethane and Propane Flames
,”
Int. J. Hydrogen Energy
,
36
(7), pp. 4474–4481.
21.
Department of the Air Force
,
1974
, “Shaft Power Gas Turbine Engine,” Aurresearch Manufacturing Company of Arizona, Phoenix, AZ, Technical Manual No. T.O. 2G-GTP30-6.
22.
Carlanescu
,
R.
, Prisecaru, T., Petcu, A. C., and Porumbel, I.,
2015
, “
Numerical Analysis of the Effect of the Fuel Composition on the Flame Characteristics in Hydrogen Methane Diffusion Flames
,”
International Conference on Jets, Wakes and Separated Flows (ICJWSF)
, Stockholm, Sweden, June, pp. 181–182.
23.
Sanusi
,
Y. S.
,
Habib
,
M. A.
, and
Mokheimer
,
E. M. A.
,
2015
, “
Experimental Study on the Effect of Hydrogen Enrichment of Methane on the Stability and Emission of Nonpremixed Swirl Stabilized Combustor
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032203
.
24.
Lu
,
C.
, and
Battaglia
,
F.
,
2015
, “
The Effects of Fuel Mixtures in Nonpremixed Combustion for a Bluff-Body Flame
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022204
.
25.
Zbeeb
,
K.
,
2016
, “
Syngas Heating Value Effects on Performance and Emissions of a Trapped Vortex Combustor
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052209
.
26.
Al-Malak
,
A.
,
Elshafei
,
M.
,
Habib
,
M. A.
, and
Al-Zaharnah
,
I.
,
2016
, “
Soft Analyzer for Monitoring NOx Emissions From a Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
031101
.
27.
El-Mahallawy
,
F.
, and
El-Din Habik
,
S.
, “
Characteristics of Turbulent Confined Diffusion Flames
,”
Fundamentals and Technology of Combustion
, Elsevier, Amsterdam, The Netherlands.
28.
Said
,
A. O.
, and
Gupta
,
A. K.
,
2015
, “
Oxygen Enriched Air Effects on Combustion, Emission, and Distributed Reaction
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042203
.
29.
Pope
,
S. B.
,
1985
, “
PDF Methods for Turbulent Reactive Flow
,”
Prog. Energy Combust. Sci.
,
11
(
2
), pp.
119
192
.
30.
Deng
,
X.
,
Xiong
,
Y.
,
Yin
,
H.
, and
Gao
,
Q.
,
2016
, “
Numerical Study of the Effect of Nozzle Configurations on Characteristics of MILD Combustion for Gas Turbine Application
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042212
.
31.
Pourhoseini
,
S. H.
, and
Asadi
,
R.
,
2016
, “
An Experimental Study of Optimum Angle of Air Swirler Vanes in Liquid Fuel Burners
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032202
.
32.
Chen
,
L.
, and
Battaglia
,
F.
,
2016
, “
The Effects of Inlet Turbulence Intensity and Computational Domain on a Nonpremixed Bluff-Body Flame
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022205
.
33.
Carlanescu
,
R.
, Prisecaru, T., Silivestru, V., Prisecaru, M. M., Tecu, V., Sandu, C., and Carlanescu, C.,
2016
, “Premixed Swirled Combustion Chamber,” Romanian State Office for Inventions and Trademarks (OSIM), Bucures¸ti, Romania, Invention Patent No.
A/00025
.
34.
Seibert
,
M.
, and
Nieh
,
S.
,
2016
, “
Measurements of Hydrogen-Enriched Combustion of JP-8 in Open Flame
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012205
.
35.
Forghan
,
F.
,
Askari
,
O.
,
Narusawa
,
U.
, and
Metghalchi
,
H.
,
2016
, “
Cooling of Turbine Blade Surface With Expanded Exit Holes: Computational Suction-Side Analysis
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
051602
.
36.
Forghan
,
F.
,
Askari
,
O.
,
Narusawa
,
U.
, and
Metghalchi
,
H.
,
2017
, “
Cooling of Turbine Blade With Expanded Exit Holes: Computational Analyses of Leading Edge and Pressure-Side of a Turbine Blade
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042004
.
You do not currently have access to this content.