In the present study, a comprehensive mathematical method is developed to realize the flame expansion in the melting furnace zones. For this purpose, the furnace is composed of two zones: flame and post flame zones. Two different scenarios are covered in this research: Using lycopodium as a substitute fuel which is then converted to methane after the vaporization process, supplying the system with methane directly as a conventional fuel. The equations governing the problem with the required boundary conditions are developed and solved in each zone. The obtained results show great compatibility with the experimental findings in this research. Since lycopodium as the replacement fuel mostly contains volatile materials, one of the challenges in this study lies on understanding the effect of particle vaporization on the temperature distribution in a furnace. It is concluded that the average temperature in zones α1, α2, β1, and β2, is reduced by about 5 K, while it is increased by approximately the same amount in zones χ1, χ2, δ1, and δ2 after considering lycopodium as a fuel. Moreover, the role of vaporization and radiation on the combustion characteristics is studied in details. The achieved results from this analysis can be implemented in several industrial applications aiming for improving the energy efficiency outcome from their systems.

References

1.
Monteiro
,
E.
, and
Rouboa
,
A.
,
2011
, “
Measurements of the Laminar Burning Velocities for Typical Syngas-Air Mixtures at Elevated Pressures
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031002
.
2.
Afzalabadi
,
A.
,
Poorfar
,
A. K.
,
Bidabadi
,
M.
,
Moghadasi
,
H.
,
Hochgreb
,
S.
,
Rahbari
,
A.
, and
Dubois
,
C.
,
2017
, “
Study on Hybrid Combustion of Aero-Suspensions of Boron-Aluminum Powders in a Quiescent Reaction Medium
,”
J. Loss Prev. Process Ind.
,
49
, pp.
645
651
.
3.
Eckhoff
,
R. K.
,
2003
,
Dust Explosions in the Process Industries: Identification, Assessment and Control of Dust Hazards
, 3rd ed.,
Gulfprofessional Publishing
, Houston, TX, p. 719.
4.
Han
,
O. S.
,
Yashima
,
M.
,
Matsuda
,
T.
,
Matsui
,
H.
,
Miyake
,
A.
, and
Ogawa
,
T.
,
2001
, “
A Study of Flame Propagation Mechanisms in Lycopodium Dust Clouds Based on Dust Particles' Behavior
,”
J. Loss Prev. Process Ind.
,
14
(
3
), pp.
153
160
.
5.
Bidabadi
,
M.
, and
Rahbari
,
A.
,
2009
, “
Modeling Combustion of Lycopodium Particles by Considering the Temperature Difference Between the Gas and the Particles
,”
Combust., Explos. Shock Waves
,
45
(
3
), pp.
278
285
.
6.
Bidabadi
,
M.
, and
Rahbari
,
A.
,
2009
, “
Novel Analytical Model for Predicting the Combustion Characteristics of Premixed Flame Propagation in Lycopodium Dust Particles
,”
J. Mech. Sci. Technol.
,
23
(
9
), pp.
2417
2423
.
7.
Rahbari
,
A.
,
Wong
,
K. F.
,
Akbari Vakilabadi
,
M.
,
Khoeiini Poorfar
,
A.
, and
Afzalabadi
,
A.
,
2017
, “
Theoretical Investigation of Particle Behavior on Flame Propagation in Lycopodium Dust Cloud
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012202
.
8.
Holladay
,
A. R.
,
2005
,
Modeling and Control of a Small Glass Furnace
,
West Virginia University
, Morgantown, WV.
9.
Morris
,
H. A.
,
2007
, “
Advanced Modeling for Small Glass Furnaces
,” M.Sc. thesis, West Virginia University, Morgantown, WV.
10.
Abbassi
,
A.
, and
Khoshmanesh
,
K.
,
2008
, “
Numerical Simulation and Experimental Analysis of an Industrial Glass Melting Furnace
,”
Appl. Therm. Eng.
,
28
(
5–6
), pp.
450
459
.
11.
Sardeshpande
,
W.
,
Gaitonde
,
U. N.
, and
Banerjee
,
R.
,
2007
, “
Model Based Energy Benchmarking for Glass Furnace
,”
Energ. Convers. Manage.
,
48
(
10
), pp.
2718
2738
.
12.
Auchet
,
O.
,
Riedinger
,
P.
,
Malasse
,
O.
, and
lung
,
C.
,
2008
, “
First-Principles Simplified Modelling of Glass Furnaces Combustion Chambers
,”
Control Eng. Pract.
,
16
(
12
), pp.
1443
1456
.
13.
Sardeshpande
,
W.
,
Anthony
,
R.
,
Gaitonde
,
U. N.
, and
Banerjee
,
R.
,
2011
, “
Performance Analysis for Glass Furnace Regenerator
,”
Appl. Energy
,
88
(
12
), pp.
4451
4458
.
14.
Tapasa
,
K.
, and
Jitwatcharakomol
,
T.
,
2012
, “
Thermodynamic Calculation of Exploited Heat Used in Glass Melting Furnace
,”
Procedia Eng.
,
32
, pp.
959
975
.
15.
Caliskan
,
H.
, and
Hepbasli
,
A.
,
2010
, “
Exergetic Analysis and Assessment of Industrial Furnaces
,”
ASME J. Energy Resour. Technol.
,
132
(
1
), p.
012001
.
16.
Shanmukharadhya
,
K. S.
, and
Sudhakar
,
K. G.
,
2005
, “
Effect of Fuel Moisture on Combustion in a Bagasse Fired Furnace
,”
ASME J. Energy Resour. Technol.
,
129
(
3
), pp.
248
253
.
17.
Li
,
Z.
,
He
,
X.
,
Wang
,
Y.
,
Zhang
,
B.
, and
He
,
H.
,
2014
, “
Design of a Flat Glass Furnace Waste Heat Power Generation System
,”
Appl. Therm. Eng.
,
63
(
1
), pp.
290
295
.
18.
Sadrameli
,
S. M.
, and
Ajdari
,
H. R. B.
,
2015
, “
Mathematical Modelling and Simulation of Thermal Regenerators Including Solid Radial Conduction Effects
,”
Appl. Therm. Eng.
,
76
, pp.
441
448
.
19.
Dzyuzer
,
V. Y.
,
Shvydkii
,
V. S.
, and
Kut'in
,
V. B.
,
2004
, “
Mathematical Model of a Glass-Melting Furnace With Horseshoe-Shaped Flame
,”
Glass Ceram.
,
61
(
9/10
), pp.
323
327
.
20.
Seshadri
,
K.
,
Berlad
,
A. L.
, and
Tangirala
,
W.
,
1992
, “
The Structure of Premixed Particle-Cloud Flames
,”
Combust. Flame
,
89
(
3–4
), pp.
333
342
.
21.
Rockwell
,
S. R.
, and
Rangwala
,
A. S.
,
2013
, “
Modeling of Dust Air Flames
,”
Fire Saf. J.
,
59
, pp.
22
29
.
You do not currently have access to this content.