To investigate the characteristics of oil distribution in porous media systems during a high water cut stage, sandstones with different permeability scales of 53.63 × 10−3 μm2 and 108.11 × 10−3 μm2 were imaged under a resolution of 4.12 μm during a water flooding process using X-ray tomography. Based on the cluster-size distribution of oil segmented from the tomography images and through classification using the shape factor and Euler number, the transformation of the oil distribution pattern in different injection stages was studied for samples with different pore structures. In general, the distribution patterns of an oil cluster continuously change during water injection. Large connected oil clusters break off into smaller segments. The sandstone with a higher permeability (108.11 × 10−3 μm2) shows the larger change in distribution pattern, and the remaining oil is trapped in the pores with a radius of approximately 7–12 μm. Meanwhile, some disconnected clusters merge together and lead to a re-connection during the high water cut period. However, the pore structure becomes compact and complex, the residual nonwetting phase becomes static and is difficult to move; and thus, all distribution patterns coexist during the entire displacement process and mainly distribute in pores with a radius of 8–12 μm. For the pore-scale entrapment characteristics of the oil phase during a high water cut period, different enhance oil recovery (EOR) methods should be considered in sandstones correspondent to each permeability scale.

References

1.
Chatzis
,
I.
,
Morrow
,
N. R.
, and
Lim
,
H. T.
,
1983
, “
Magnitude and Detailed Structure of Residual Oil Saturation
,”
SPE J.
,
23
(
2
), pp.
311
326
.
2.
Wang
,
W.
,
Shahvali
,
M.
, and
Su
,
Y.
,
2017
, “
Analytical Solutions for a Quad-Linear Flow Model Derived for Multistage Fractured Horizontal Wells in Tight Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012905
.
3.
Sedaghat
,
M. H.
,
Ghazanfari
,
M. H.
,
Parvazdavani
,
M.
, and
Morshedi
,
S.
,
2013
, “
Experimental Investigation of Microscopic/Macroscopic Efficiency of Polymer Flooding in Fractured Heavy Oil Five-Spot Systems
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032901
.
4.
Zhang
,
K.
,
Ma
,
X.
,
Li
,
Y.
,
Wu
,
H.
,
Cui
,
C.
,
Zhang
,
X.
,
Zhang
,
H.
, and
Yao
,
J.
,
2018
, “
Parameter Prediction of Hydraulic Fracture for Tight Reservoir Based on Micro-Seismic and History Matching
,”
Fractals
,
26
(
2
), p.
1840009
.
5.
Song
,
W.
,
Yao
,
J.
,
Li
,
Y.
,
Sun
,
H.
, and
Yang
,
Y.
,
2018
, “
Fractal Models for Gas Slippage Factor in Porous Media Considering Second-Order Slip and Surface Adsorption
,”
Int. J. Heat Mass Transf.
,
118
, pp.
948
960
.
6.
Zhang
,
L.
,
Cui
,
C.
,
Ma
,
X.
,
Sun
,
Z.
,
Liu
,
F.
, and
Zhang
,
K.
,
2019
, “
A Fractal Discrete Fracture Network Model for History Matching of Naturally Fractured Reservoirs
,”
Fractals
,
27
(
1
), p.
1940008
.
7.
Yang
,
P.
,
Guo
,
H.
, and
Yang
,
D.
,
2013
, “
Determination of Residual Oil Distribution during Waterflooding in Tight Oil Formations With NMR Relaxometry Measurements
,”
Energy Fuels
,
27
(
10
), pp.
5750
5756
.
8.
Li
,
J.
,
Yin
,
J.
,
Zhang
,
Y.
,
Lu
,
S.
,
Wang
,
W.
,
Li
,
J.
,
Chen
,
F.
, and
Meng
,
Y.
,
2015
, “
A Comparison of Experimental Methods for Describing Shale Pore Features—A Case Study in the Bohai Bay Basin of Eastern China
,”
Int. J. Coal Geol.
,
152
, pp.
39
49
.
9.
Yao
,
Y.
, and
Liu
,
D.
,
2012
, “
Comparison of Low-Field NMR and Mercury Intrusion Porosimetry in Characterizing Pore Size Distributions of Coals
,”
Fuel
,
95
, pp.
152
158
.
10.
Ge
,
X.
,
Liu
,
J.
,
Fan
,
Y.
,
Xing
,
D.
,
Deng
,
S.
, and
Cai
,
J.
,
2018
, “
Laboratory Investigation Into the Formation and Dissociation Process of Gas Hydrate by Low-Field NMR Technique
,”
J. Geophys. Res.-Solid Earth
,
123
(
5
), pp.
3339
3346
.
11.
Mohebbifar
,
M.
,
Ghazanfari
,
M. H.
, and
Vossoughi
,
M.
,
2015
, “
Experimental Investigation of Nano-Biomaterial Applications for Heavy Oil Recovery in Shaly Porous Models: A Pore-Level Study
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
014501
.
12.
Azamipour
,
V.
,
Assareh
,
M.
,
Dehghani
,
M. R.
, and
Mittermeir
,
G. M.
,
2017
, “
An Efficient Workflow for Production Allocation During Water Flooding
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032902
.
13.
Elkatatny
,
S.
,
Mahmoud
,
M.
, and
Nasr-El-Din
,
H. A.
,
2013
, “
Filter Cake Properties of Water-Based Drilling Fluids Under Static and Dynamic Conditions Using Computed Tomography Scan
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042201
.
14.
Pak
,
T.
,
Butler
,
I. B.
,
Geiger
,
S.
,
van Dijke
,
M. I. J.
, and
Sorbie
,
K. S.
,
2015
, “
Droplet Fragmentation: 3D Imaging of a Previously Unidentified Pore-Scale Process During Multiphase Flow in Porous Media
,”
Proc. Natl. Acad. Sci. USA
,
112
(
7
), pp.
1947
1952
.
15.
Sun
,
H.
,
Yao
,
J.
,
Cao
,
Y.-c.
,
Fan
,
D.-y.
, and
Zhang
,
L.
,
2017
, “
Characterization of Gas Transport Behaviors in Shale Gas and Tight Gas Reservoirs by Digital Rock Analysis
,”
Int. J. Heat Mass Transf.
,
104
, pp.
227
239
.
16.
Yang
,
Y.
,
Liu
,
Z.
,
Yao
,
J.
,
Zhang
,
L.
,
Ma
,
J.
,
Hejazi
,
S.
,
Luquot
,
L.
, and
Ngarta
,
T.
,
2018
, “
Flow Simulation of Artificially Induced Microfractures Using Digital Rock and Lattice Boltzmann Methods
,”
Energies
,
11
(
8
), p.
2145
.
17.
Zhao
,
J.
,
Yao
,
J.
,
Zhang
,
M.
,
Zhang
,
L.
,
Yang
,
Y.
,
Sun
,
H.
,
An
,
S.
, and
Li
,
A.
,
2016
, “
Study of Gas Flow Characteristics in Tight Porous Media With a Microscale Lattice Boltzmann Model
,”
Sci. Rep.
,
6
, p.
32393
.
18.
Culligan
,
K. A.
,
Wildenschild
,
D.
,
Christensen
,
B. S.
,
Gray
,
W. G.
,
Rivers
,
M. L.
, and
Tompson
,
A. F.
,
2004
, “
Interfacial Area Measurements for Unsaturated Flow Through a Porous Medium
,”
Water Resour. Res.
,
40
(
12
), p.
W12413
.
19.
Geistlinger
,
H.
,
Mohammadian
,
S.
,
Schlueter
,
S.
, and
Vogel
,
H.-J.
,
2014
, “
Quantification of Capillary Trapping of Gas Clusters Using X-Ray Microtomography
,”
Water Resour. Res.
,
50
(
5
), pp.
4514
4529
.
20.
Liu
,
S.
,
Wang
,
J. J.
,
He
,
H.
, and
Wang
,
H.
,
2018
, “
Mechanism on Imbibition of Fracturing Fluid in Nanopore
,”
Nanosci. Nanotechnol. Lett.
,
10
(
1
), pp.
87
93
.
21.
Cai
,
J.
,
Perfect
,
E.
,
Cheng
,
C.-L.
, and
Hu
,
X.
,
2014
, “
Generalized Modeling of Spontaneous Imbibition Based on Hagen-Poiseuille Flow in Tortuous Capillaries With Variably Shaped Apertures
,”
Langmuir
,
30
(
18
), pp.
5142
5151
.
22.
Wang
,
S.
,
Feng
,
Q.
,
Dong
,
Y.
,
Han
,
X.
, and
Wang
,
S.
,
2015
, “
A Dynamic Pore-Scale Network Model for Two-Phase Imbibition
,”
J. Nat. Gas Sci. Eng.
,
26
, pp.
118
129
.
23.
Chen
,
X.
,
Verma
,
R.
,
Espinoza
,
D. N.
, and
Prodanovic
,
M.
,
2018
, “
Pore-Scale Determination of Gas Relative Permeability in Hydrate-Bearing Sediments Using X-Ray Computed Micro-Tomography and Lattice Boltzmann Method
,”
Water Resour. Res.
,
54
(
1
), pp.
600
608
.
24.
Song
,
W.
,
Yao
,
J.
,
Li
,
Y.
,
Sun
,
H.
,
Zhang
,
L.
,
Yang
,
Y.
,
Zhao
,
J.
, and
Sui
,
H.
,
2016
, “
Apparent Gas Permeability in an Organic-Rich Shale Reservoir
,”
Fuel
,
181
, pp.
973
984
.
25.
Rücker
,
M.
,
Berg
,
S.
,
Armstrong
,
R.
,
Georgiadis
,
A.
,
Ott
,
H.
,
Schwing
,
A.
,
Neiteler
,
R.
,
Brussee
,
N.
,
Makurat
,
A.
, and
Leu
,
L.
,
2015
, “
From Connected Pathway Flow to Ganglion Dynamics
,”
Geophys. Res. Lett.
,
42
(
10
), pp.
3888
3894
.
26.
Al-Raoush
,
R. I.
,
2014
, “
Experimental Investigation of the Influence of Grain Geometry on Residual NAPL Using Synchrotron Microtomography
,”
J. Contam. Hydrol.
,
159
, pp.
1
10
.
27.
Kumar
,
M.
,
Knackstedt
,
M. A.
,
Senden
,
T. J.
,
Sheppard
,
A. P.
, and
Middleton
,
J. P.
,
2010
, “
Visualizing and Quantifying the Residual Phase Distribution in Core Material
,” ,
51
(
5
), pp.
323
332
.
28.
Georgiadis
,
A.
,
Berg
,
S.
,
Makurat
,
A.
,
Maitland
,
G.
, and
Ott
,
H.
,
2013
, “
Pore-Scale Micro-Computed-Tomography Imaging: Nonwetting-Phase Cluster-Size Distribution During Drainage and Imbibition
,”
Phys. Rev. E
,
88
(
3
), p.
033002
.
29.
Krummel
,
A. T.
,
Datta
,
S. S.
,
Münster
,
S.
, and
Weitz
,
D. A.
,
2013
, “
Visualizing Multiphase Flow and Trapped Fluid Configurations in a Model Three-Dimensional Porous Medium
,”
AIChE J.
,
59
(
3
), pp.
1022
1029
.
30.
Oughanem
,
R.
,
Youssef
,
S.
,
Bauer
,
D.
,
Peysson
,
Y.
,
Maire
,
E.
, and
Vizika
,
O.
,
2015
, “
A Multi-Scale Investigation of Pore Structure Impact on the Mobilization of Trapped Oil by Surfactant Injection
,”
Transp. Porous Media
,
109
(
3
), pp.
673
692
.
31.
Zhou
,
Y.
,
Helland
,
J. O.
, and
Jettestuen
,
E.
,
2013
, “
Dynamic Capillary Pressure Curves From Pore-Scale Modeling in Mixed-Wet-Rock Images
,”
SPE J.
,
18
(
4
), pp.
634
645
.
32.
Yuan
,
B.
,
Moghanloo
,
R. G.
, and
Wang
,
W.
,
2018
, “
Using Nanofluids to Control Fines Migration for Oil Recovery: Nanofluids Co-Injection or Nanofluids Pre-Flush? -A Comprehensive Answer
,”
Fuel
,
215
, pp.
474
483
.
33.
Sun
,
X.
,
Zhang
,
Y.
,
Chen
,
G.
, and
Gai
,
Z.
,
2017
, “
Application of Nanoparticles in Enhanced Oil Recovery: A Critical Review of Recent Progress
,”
Energies
,
10
(
3
), p.
345
.
34.
Iglauer
,
S.
,
Paluszny
,
A.
, and
Blunt
,
M. J.
,
2013
, “
Simultaneous Oil Recovery and Residual Gas Storage: A Pore-Level Analysis Using In Situ X-Ray Micro-Tomography
,”
Fuel
,
103
(
1
), pp.
905
914
.
35.
Yang
,
Y.
,
Zhang
,
W.
,
Gao
,
Y.
,
Wan
,
Y.
,
Su
,
Y.
,
An
,
S.
,
Sun
,
H.
,
Zhang
,
L.
,
Zhao
,
J.
,
Liu
,
L.
,
Liu
,
P.
,
Liu
,
Z.
,
Li
,
A.
, and
Yao
,
J.
,
2016
, “
Influence of Stress Sensitivity on Microscopic Pore Structure and Fluid Flow in Porous Media
,”
J. Nat. Gas Sci. Eng.
,
36
(
Part A
), pp.
20
31
.
36.
Li
,
S.
,
Tang
,
D.
,
Pan
,
Z.
,
Xu
,
H.
, and
Huang
,
W.
,
2013
, “
Characterization of the Stress Sensitivity of Pores for Different Rank Coals by Nuclear Magnetic Resonance
,”
Fuel
,
111
, pp.
746
754
.
37.
Yang
,
Y.
,
Liu
,
Z.
,
Sun
,
Z.
,
An
,
S.
,
Zhang
,
W.
,
Liu
,
P.
,
Yao
,
J.
, and
Ma
,
J.
,
2017
, “
Research on Stress Sensitivity of Fractured Carbonate Reservoirs Based on CT Technology
,”
Energies
,
10
(
11
), p.
1833
.
38.
Andrew
,
M.
,
Bijeljic
,
B.
, and
Blunt
,
M. J.
,
2014
, “
Pore-Scale Contact Angle Measurements at Reservoir Conditions Using X-Ray Microtomography
,”
Adv. Water Resour.
,
68
, pp.
24
31
.
39.
Al-Raoush
,
R. I.
,
2009
, “
Impact of Wettability on Pore-Scale Characteristics of Residual Nonaqueous Phase Liquids
,”
Environ. Sci. Technol.
,
43
(
13
), pp.
4796
4801
.
40.
Pan
,
B.
,
Li
,
Y.
,
Wang
,
H.
,
Jones
,
F.
, and
Iglauer
,
S.
,
2018
, “
CO2 and CH4 Wettabilities of Organic-Rich Shale
,”
Energy Fuels
,
32
(
2
), pp.
1914
1922
.
41.
Zhou
,
Y.
,
Helland
,
J. O.
, and
Hatzignatiou
,
D. G.
,
2014
, “
Pore-Scale Modeling of Waterflooding in Mixed-Wet-Rock Images: Effects of Initial Saturation and Wettability
,”
SPE J.
,
19
(
1
), pp.
88
100
.
42.
Iglauer
,
S.
,
Fernø
,
M. A.
,
Shearing
,
P.
, and
Blunt
,
M. J.
,
2012
, “
Comparison of Residual Oil Cluster Size Distribution, Morphology and Saturation in Oil-Wet and Water-Wet Sandstone
,”
J. Colloid Interface Sci.
,
375
(
1
), pp.
187
192
.
43.
Karpyn
,
Z. T.
,
Piri
,
M.
, and
Singh
,
G.
,
2010
, “
Experimental Investigation of Trapped Oil Clusters in a Water-Wet Bead Pack Using X-Ray Microtomography
,”
Water Resour. Res.
,
46
(
4
), p.
W04510
.
44.
Al-Raoush
,
R. I.
, and
Willson
,
C. S.
,
2005
, “
A Pore-Scale Investigation of a Multiphase Porous Media System
,”
J. Contam. Hydrol.
,
77
(
1
), pp.
67
89
.
45.
Guo
,
Y.
,
Wang
,
Y.
, and
Hou
,
T.
,
2011
, “
Speckle Filtering of Ultrasonic Images Using a Modified Non Local-Based Algorithm
,”
Biomed. Signal Process. Control
,
6
(
2
), pp.
129
138
.
46.
Manjon
,
J. V.
,
Coupe
,
P.
,
Marti-Bonmati
,
L.
,
Collins
,
D. L.
, and
Robles
,
M.
,
2010
, “
Adaptive Non-Local Means Denoising of MR Images With Spatially Varying Noise Levels
,”
J. Magn. Reson. Imaging
,
31
(
1
), pp.
192
203
.
47.
Sheppard
,
A. P.
,
Sok
,
R. M.
, and
Averdunk
,
H.
,
2004
, “
Techniques for Image Enhancement and Segmentation of Tomographic Images of Porous Materials
,”
Physica A
,
339
(
1
), pp.
145
151
.
48.
Yang
,
Y.
,
Wang
,
C.
,
Yao
,
J.
, and
Gao
,
Y.
,
2015
, “
A New Voxel Upscaling Method Based on Digital Rock
,”
Int. J. Multiscale Comput. Eng.
,
13
(
4
), pp.
339
346
.
49.
Jiang
,
Z.
,
Wu
,
K.
,
Couples
,
G.
,
Van Dijke
,
M. I. J.
,
Sorbie
,
K. S.
, and
Ma
,
J.
,
2007
, “
Efficient Extraction of Networks From Three-Dimensional Porous Media
,”
Water Resour. Res.
,
43
(
12
), p.
W12S03
.
50.
Danielsson
,
P.-E.
,
1980
, “
Euclidean Distance Mapping
,”
Comput. Graph. Image Process.
,
14
(
3
), pp.
227
248
.
51.
Wildenschild
,
D.
, and
Sheppard
,
A. P.
,
2013
, “
X-Ray Imaging and Analysis Techniques for Quantifying Pore-Scale Structure and Processes in Subsurface Porous Medium Systems
,”
Adv. Water Resour.
,
51
(
1
), pp.
217
246
.
52.
Blunt
,
M. J.
,
2001
, “
Flow in Porous Media—Pore-Network Models and Multiphase Flow
,”
Curr. Opin. Colloid Interface Sci.
,
6
(
3
), pp.
197
207
.
53.
Yang
,
Y.
,
Liu
,
P.
,
Zhang
,
W.
,
Liu
,
Z.
,
Sun
,
H.
,
Zhang
,
L.
,
Zhao
,
J.
,
Song
,
W.
,
Liu
,
L.
,
An
,
S.
, and
Yao
,
J.
,
2016
, “
Effect of the Pore Size Distribution on the Displacement Efficiency of Multiphase Flow in Porous Media
,”
Open Phys.
,
14
(
1
), pp.
610
616
.
54.
Liu
,
G. F.
,
Bai
,
Y. X.
,
Gu
,
D. H.
,
Lu
,
Y.
, and
Yang
,
D. Y.
,
2018
, “
Determination of Static and Dynamic Characteristics of Microscopic Pore-Throat Structure in a Tight Oil-Bearing Sandstone Formation
,”
AAPG Bull.
,
102
(
9
), pp.
1867
1892
.
55.
Vogel
,
H.
,
2000
, “
A Numerical Experiment on Pore Size, Pore Connectivity, Water Retention, Permeability, and Solute Transport Using Network Models
,”
Eur. J. Soil Sci.
,
51
(
1
), pp.
99
105
.
56.
Yang
,
Y.
,
Yao
,
J.
,
Wang
,
C.
,
Gao
,
Y.
,
Zhang
,
Q.
,
An
,
S.
, and
Song
,
W.
,
2015
, “
New Pore Space Characterization Method of Shale Matrix Formation by Considering Organic and Inorganic Pores
,”
J. Nat. Gas Sci. Eng.
,
27
(
P2
), pp.
496
503
.
57.
Yao
,
J.
,
Wang
,
C.
,
Yang
,
Y.
,
Hu
,
R.
, and
Wang
,
X.
,
2013
, “
The Construction of Carbonate Digital Rock With Hybrid Superposition Method
,”
J. Petrol. Sci. Eng.
,
110
, pp.
263
267
.
58.
Prodanović
,
M.
,
Lindquist
,
W. B.
, and
Seright
,
R. S.
,
2007
, “
3D Image-Based Characterization of Fluid Displacement in a Berea Core
,”
Adv. Water Resour.
,
30
(
2
), pp.
214
226
.
59.
Kong
,
T. Y.
, and
Rosenfeld
,
A.
,
1989
, “
Digital Topology: Introduction and Survey
,”
Comput. Vis. Graph. Image Process.
,
48
(
3
), pp.
357
393
.
You do not currently have access to this content.