Abstract

Temporary plugging fracturing is an effective way to enhance the fracture complexity and increase the stimulated reservoir volume (SRV) of unconventional reservoirs. The performance of temporary plugging agents (TPA) directly affects the success rate of temporary plugging. Currently, laboratory evaluation of the plugging effects of the TPA is rarely reported, and there are no industrial standards on laboratory evaluation of TPA plugging. In this study, two new experimental methods were used to evaluate a novel particulate TPA. The plugging performance of the TPA to the core end face and the propped fractures was measured through displacement experiments of cores, and the applicability of its basic performance to the temporary plugging fracturing was verified. Furthermore, the large-scale true triaxial simulation experiment of temporary plugging fracturing was carried out to confirm the influence mechanism of different factors on fracture propagation during temporary plugging. Finally, the influence rule of different types of combinations of TPA and placement patterns on the plugging was obtained based on laboratory evaluation of the conductivity. The results show that the novel TPA causes effective temporary plugging on the core end face and the propped fractures and has the strong plugging performance, and the TPA solubility in the carrying fluids decreases with the increase in the TPA concentration. The basic performance of the TPA meets the requirements of temporary plugging fracturing. If the proppants and 20% fibers are placed within the fracture in the mixed pattern, the fracture is initiated along the direction of the horizontal maximum principal stress. The preset fracture reduces the fracture initiation pressure. The fracture complexity is closely related to the placement pattern of TPA and proppants. If the preset fractures are filled by the uniform mixture or the plug of the 20/40 mesh or 20/80 mesh particulate TPA (4%), fibers (1%), and proppants, the fracture initiation pressure significantly increases, and the complex fractures are formed after fracturing. Effective plugging cannot be formed only by mixing the fibers with the proppants, and the uniform mixture of the proppants and 4% particulate TPA and the 6% particulate TPA at the front end of the fracture form a temporary plugging belt, achieving effective plugging. The fibers improve the conductivity under the low closure stress, and it has a certain effect of temporary plugging under the closure stress above 30 MPa. The research results provide the design consideration for creating the complex fracture by temporary plugging.

References

1.
Hofmann
,
H.
,
Babadagli
,
T.
, and
Zimmermann
,
G.
,
2014
, “
Numerical Simulation of Complex Fracture Network Development by Hydraulic Fracturing in Naturally Fractured Ultratight Formations
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042905
. 10.1115/1.4028690
2.
He
,
Y.
,
Chen
,
L.
,
Sun
,
Z.
,
Chai
,
Z.
, and
Rui
,
Z.
,
2020
, “
Improving oil Recovery Through Inter-Fracture Injection and Production in a Cluster Well
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
053002
. 10.1115/1.4045957
3.
Guo
,
T. K.
,
Zhang
,
S. C.
,
Ge
,
H. K.
,
Wang
,
X. Q.
,
Lei
,
X.
, and
Xiao
,
B.
,
2015
, “
A New Method for Evaluation of Fracture Network Formation Capacity of Rock
,”
Fuel
,
140
, pp.
778
787
. 10.1016/j.fuel.2014.10.017
4.
Guo
,
T. K.
,
Tang
,
S. J.
,
Sun
,
J.
,
Gong
,
F. C.
,
Liu
,
X. Q.
,
Qu
,
Z. Q.
, and
Zhang
,
W.
,
2019
, “
A Coupled Thermal-Hydraulic-Mechanical Modeling and Evaluation of Geothermal Extraction in the Enhanced Geothermal System Based on Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation
,”
Appl. Energy
,
258
, p.
113981
. 10.1016/j.apenergy.2019.113981
5.
Zhao
,
X.
,
Rui
,
Z.
,
Liao
,
X.
, and
Zhang
,
R.
,
2015
, “
The Qualitative and Quantitative Fracture Evaluation Methodology in Shale Gas Reservoir
,”
J. Nat. Gas Sci. Eng.
,
27
, pp.
486
495
. 10.1016/j.jngse.2015.08.009
6.
Zhang
,
J. T.
,
Zhao
,
X. S.
,
Wang
,
W. G.
, and
Zhang
,
Y. F.
,
2018
, “
The Research and Practice of Horizontal Well Volume Fracturing Technology in Huangling oil Region
,”
Unconv. Oil Gas
,
5
(
3
), pp.
84
87
.
7.
Guo
,
T.
,
Zhang
,
S.
,
Zou
,
Y.
, and
Xiao
,
B.
,
2015
, “
Numerical Simulation of Hydraulic Fracture Propagation in Shale Gas Reservoir
,”
J. Nat. Gas Sci. Eng.
,
26
, pp.
847
856
. 10.1016/j.jngse.2015.07.024
8.
Huang
,
J. S.
,
Griffiths
,
D. V.
, and
Wong
,
S.-W.
,
2012
, “
Initiation Pressure, Location and Orientation of Hydraulic Fracture
,”
Int. J. Rock Mech. Min. Sci.
,
49
, pp.
59
67
. 10.1016/j.ijrmms.2011.11.014
9.
Warpinski
,
N. R.
, and
Branagan
,
P. T.
,
1989
, “
Altered-Stress Fracturing
,”
J. Pet. Technol.
,
41
(
9
), pp.
990
997
. 10.2118/17533-PA
10.
He
,
Y.
,
Cheng
,
S.
,
Rui
,
Z.
,
Qin
,
J.
,
Fu
,
L.
,
Shi
,
J.
,
Wang
,
Y.
,
Li
,
D.
,
Patil
,
S.
,
Yu
,
H.
, and
Lu
,
J.
,
2018
, “
An Improved Rate-Transient Analysis Model of Multi-Fractured Horizontal Wells With Non-uniform Hydraulic Facture Properties
,”
Energies
,
11
(
2
), p.
393
. 10.3390/en11020393
11.
Dahi-Taleghani
,
A.
, and
Olson
,
J. E.
,
2011
, “
Numerical Modeling of Multistranded Hydraulic Fracture Propagation: Accounting for the Interaction Between Induced and Natural Fractures
,”
SPE J.
,
16
(
3
), pp.
575
581
. 10.2118/124884-PA
12.
Cohen
,
C. E.
,
Tardy
,
P. M. J.
,
Lesko
,
T. M.
, and
Lecerf
,
B. H.
,
2010
, “
Understanding Diversion With a Novel Fiber-Laden Acid System for Matrix Acidizing of Carbonate Formations
,”
SPE Annual Technical Conference and Exhibition
,
Florence, Italy
,
Sept. 19–22
, SPE Paper No. 134495.
13.
Wang
,
B.
,
Zhou
,
F. J.
,
Yang
,
C.
,
Xu
,
C.
,
Liu
,
J. F.
,
Han
,
S.
,
Wang
,
D.
,
Ren
,
Z.
,
Liang
,
T.
,
2019
, “
A Novel Experimental Method to Investigate the Plugging Characteristics of Diversion Agents Within Hydro-Fracture
,”
J. Pet. Sci. Eng.
,
183
, p.
106354
. 10.1016/j.petrol.2019.106354
14.
Jia
,
H.
,
Yang
,
X.-Y.
, and
Zhao
,
J.-Z.
,
2019
, “
Development of a Novel Insitu-Generated Foamed Gel as Temporary Plugging Agent Used for Well Workover: Affecting Factors and Working Performance
,”
SPE J.
,
24
(
4
), pp.
1757
1776
. 10.2118/194215-PA
15.
Zhao
,
M. W.
,
Gao
,
Z. B.
, and
Dai
,
C. L.
,
2018
, “
Advancement of Temporary Plugging Agent for Fracturing in Oilfield
,”
Oilfield Chem.
,
35
(
3
), pp.
538
544
.
16.
Xu
,
H. X.
,
Wei
,
P. F.
,
Wang
,
Z. W.
,
Zhang
,
M.
,
Yang
,
M. Z.
, and
Fan
,
J. J.
,
2018
, “
A Technique of Temporary Blocking for Re-fracturing That Combines Non-solid Phase Fuzzy-Ball Fluid and Fibrous Material
,”
Unconventional Oil Gas
,
5
(
4
), pp.
75
79
.
17.
Lai
,
N. J.
,
Chen
,
K.
, and
Ma
,
H. W.
,
2014
, “
Performance Evaluation of Water Soluble Temporary Plugging Agent for Fracturing
,”
Oilfield Chem.
,
31
(
2
), pp.
215
218
.
18.
Xue
,
S.
,
Zhang
,
Z.
,
Wu
,
G.
,
Wang
,
Y.
,
Wu
,
J.
, and
Xu
,
J.
,
2015
, “
Application of a Novel Temporary Blocking Agent in Refracturing
,”
SPE Asia Pacific Unconventional Resources Conference and Exhibition
,
Brisbane, Australia
,
Nov. 9–11
, SPE Paper No. 176900.
19.
Liu
,
P. D.
,
Wei
,
F. L.
,
Zhang
,
S.
,
Zhu
,
X. Y.
,
Wang
,
L. F.
, and
Xiong
,
C. M.
,
2018
, “
A Bull-Heading Water Control Technique of Thermo-Sensitive Temporary Plugging Agent
,”
Pet/ Exp. Dev.
,
45
(
3
), pp.
513
519
.
20.
Chen
,
L. F.
,
Zhu
,
X. M.
,
Fu
,
M. L.
,
Zhao
,
H.
,
Li
,
G.
, and
Zuo
,
J. Q.
,
2019
, “
Experimental Study of Calcium-Enhancing Terpolymer Hydrogel for Improved Oil Recovery in Ultradeep Carbonate Reservoir
,”
Colloids Surf., A
,
570
, pp.
251
259
. 10.1016/j.colsurfa.2019.03.025
21.
Hua
,
Z.
,
Lin
,
M. Q.
,
Guo
,
J. R.
,
Xu
,
F. Q.
,
Li
,
Z. Y.
, and
Li
,
M. Y.
,
2013
, “
Study on Plugging Performance of Cross-Linked Polymer Microspheres With Reservoir Pores
,”
J. Pet. Sci. Eng.
,
105
, pp.
70
75
. 10.1016/j.petrol.2013.03.008
22.
Zhao
,
L. Q.
,
Pei
,
Y.
,
Du
,
G. Y.
,
Wen
,
Z. H.
,
Luo
,
Z. F.
, and
Du
,
J.
,
2018
, “
Thermo-Responsive Temporary Plugging Agent Based on Multiple Phase Transition Supramolecular Gel
,”
Pet. Chem.
,
58
(
1
), pp.
94
101
. 10.1134/S0965544118010103
23.
Jiang
,
H. J.
,
Ye
,
Z. R.
,
Yang
,
X. F.
, and
Xiong
,
J.
,
2005
, “
A Laboratory Simulation Study on Temporary Plugging in Fractured Reservoir
,”
China Offshore Oil Gas
,
17
(
1
), pp.
41
43
.
24.
Bai
,
H. Y.
,
Yang
,
Y.
, and
Su
,
C. E.
,
2010
, “
Adaptability Research of Fracture Shift Technology in Low-Permeability Oil Field
,”
Petrochem. Ind. Appl.
,
29
(
2–3
), pp.
56
60
.
25.
Li
,
J. X.
,
Huang
,
J. J.
,
Luo
,
P. Y.
,
Yang
,
L.
, and
Lu
,
Y.
,
2011
, “
Plugging Mechanism and Estimation Models of Rigid Particles While Drilling in Fracture Formations
,”
Acta Petrolei Sin.
,
32
(
3
), pp.
509
513
.
26.
Feng
,
L. M.
,
2015
,
Study on Acid Fracturing Modification Compound Temporary Plugging Technology in Carbonate Reservoir of Northeast Sichuan
,
Chendu University of Technology
,
Sichuan, China
.
27.
Jiang
,
W. D.
,
Liu
,
H.
,
Yan
,
J.
,
Liang
,
C.
,
He
,
A. L.
,
Zhang
,
H. W.
, and
Zhu
,
D. W.
,
2015
, “
A Novel Fiber Temporary Plugging and Diverting Acid Fracturing Technology: An Experimental Study and Field Practices
,”
Natur. Gas Ind.
,
35
(
11
), pp.
54
59
.
28.
Aghighi
,
M. A.
, and
Rahman
,
S. S.
,
2010
, “
Initiation of a Secondary Hydraulic Fracture and Its Interaction With the Primary Fracture
,”
Int. J. Rock Mech. Min. Sci.
,
47
(
5
), pp.
714
722
. 10.1016/j.ijrmms.2010.04.008
29.
He
,
C. M.
,
Shi
,
S. Z.
,
Zhong
,
K. W.
,
Chen
,
J.
,
Jiang
,
W.
, and
Cheng
,
N.
,
2018
, “
Performance Evaluation of Water Soluble Diverter Agent and its Temporary Plugging Effect in Refracturing
,”
IOP Conference Series: Earth and Environmental Science
,
Xiamen, China
,
Mar. 1–3
, Vol.
188
, p.
012071
.
30.
Yang
,
C.
,
Zhou
,
F. J.
,
Feng
,
W.
,
Tian
,
Z. D.
,
Yuan
,
L. S.
, and
Gao
,
L. Y.
,
2019
, “
Plugging Mechanism of Fibers and Particulates in Hydraulic Fracture
,”
J. Pet. Sci. Eng.
,
176
, pp.
396
402
. 10.1016/j.petrol.2019.01.084
31.
Bo
,
J. W.
,
Wen
,
Q. Z.
,
Luo
,
M. L.
, and
Duan
,
X. F.
,
2018
, “
Temporary Plugging Experimental Investigation of Diverting Fracturing
,”
International Field Exploration and Development Conference
,
Xi’an, China
,
Sept. 18–20
, pp.
2041
2048
.
32.
Guo
,
Y. B.
,
2016
,
Study on the Technique of Temporary Diverting Fracturing in Tight Sandstone gas Reservoir
,
Southwest Petroleum University
,
Sichuan, China
.
33.
Guo
,
T.
,
Rui
,
Z.
,
Qu
,
Z.
, and
Qi
,
N.
,
2019
, “
Experimental Study of Directional Propagation of Hydraulic Fracture by Multi-Radial Slim Holes
,”
J. Petroleum Sci. Eng.
,
166
, pp.
592
601
. 10.1016/j.petrol.2018.03.102
34.
Jiang
,
J.
,
Rui
,
Z.
,
Hazlett
,
R.
and
Lu
,
J.
,
2019
, “
An Integrated Technical-Economic-Environmental Assessment of CO2 Enhanced Oil Recovery
,”
Appl. Energy
,
247
, pp.
190
211
. 10.1016/j.apenergy.2019.04.025
35.
Liu
,
Y.
,
Chen
,
S.
,
Guan
,
B.
, and
Xu
,
P.
,
2019
, “
Layout Optimization of Large-Scale Oil-Gas Gathering System Based on Combined Optimization Strategy
,”
Neurocomputing
,
332
, pp.
159
183
. 10.1016/j.neucom.2018.12.021
36.
Wang
,
Z.
,
Bai
,
Y.
,
Zhang
,
H.
, and
Liu
,
Y.
,
2019
, “
Investigation on Gelation Nucleation Kinetics of Waxy Crude Oil Emulsions by Their Thermal Behavior
,”
J. Pet. Sci. Eng.
,
181
, p.
106230
. 10.1016/j.petrol.2019.106230
37.
Liu
,
S.
,
Zhang
,
L.
,
Zhang
,
K.
,
Zhou
,
J.
,
He
,
H.
, and
Hou
,
Z.
,
2019
, “
A Simplified and Efficient Method for Water Flooding Production Index Calculations in Low Permeable Fractured Reservoir
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112905
. 10.1115/1.4043788
38.
Yushi
,
Z.
,
Shicheng
,
Z.
,
Tong
,
Z.
,
Xiang
,
Z.
, and
Tiankui
,
G.
,
2016
, “
Experimental Investigation Into Hydraulic Fracture Network Propagation in Gas Shales Using CT Scanning Technology
,”
Rock Mech. Rock Eng.
,
49
(
1
), pp.
33
45
. 10.1007/s00603-015-0720-3
39.
Guo
,
T. K.
,
Zhang
,
S. C.
,
Qu
,
Z. Q.
,
Zhou
,
T.
,
Xiao
,
Y. S.
, and
Gao
,
J.
,
2014
, “
Experimental Study of Hydraulic Fracturing for Shale by Stimulated Reservoir Volume
,”
Fuel
,
128
, pp.
373
380
. 10.1016/j.fuel.2014.03.029
40.
He
,
J.
,
Rui
,
Z.
, and
Ling
,
K.
,
2016
, “
A new Method to Determine Biot’s Coefficient of Bakeen Samples
,”
J. Pet. Sci. Eng.
,
35
, pp.
259
264
.
41.
Fan
,
T.-G.
, and
Zhang
,
G.-Q.
,
2014
, “
Laboratory Investigation of Hydraulic Fracture Networks in Formations With Continuous Orthogonal Fractures
,”
Energy
,
74
, pp.
164
173
. 10.1016/j.energy.2014.05.037
You do not currently have access to this content.