Abstract

A computational model of a massless kite that produces power in an airborne wind energy (AWE) system is presented. AWE systems use tethered kites at high altitudes to extract energy from the wind and are being considered as an alternative to wind turbines since the kites can move in high-speed cross-wind motions over large swept areas to increase power production. In our model, the kite completes successive power-retraction cycles where the kite angle of attack is altered as required to vary the resultant aerodynamic forces on the kite. The flow field is found in a two-dimensional domain near the flexible kite by solving the full Navier–Stokes equations using an Eulerian grid together with a Lagrangian representation of the kite. The flow solver is a finite volume projection method using a non-uniform mesh on a staggered grid and corrector–predictor technique to ensure a second-order accuracy in time. The two-dimensional kite shape is modeled as a slightly cambered immersed boundary that moves with the flow. The flexible kite is modeled with a set of linear springs following Hooke’s law. The unstretched length of each elastic tether at a given time step is controlled using periodic triangular wave shapes to achieve the required power-retraction phases. A study was conducted in which the wave shape amplitude, frequency, and phase (between two tethers) were adjusted to achieve a suitably high net power output. The results are in good agreement with predictions for Loyd’s simple kite in two-dimensional motion. Aerodynamic coefficients for the kite, tether tensions, tether reel-out and reel-in speeds, and the vorticity fields in the kite wake are also determined.

References

1.
Amano
,
R. S.
,
2017
, “
Review of Wind Tuerbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
.
2.
Gupta
,
A. K.
,
2015
, “
Efficient Wind Energy Conversion: Evolution to Modern Design
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051201
. 10.1115/1.4030109
3.
Astolfi
,
D.
,
Castellani
,
F.
,
Fravolini
,
M. L.
,
Cascianelli
,
S.
, and
Terzi
,
L.
,
2019
, “
Precision Computation of Wind Turbine Power Upgrades: An Aerodynamic and Control Optimization Test Case
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051205
.
4.
Fawzy
,
D.
,
Moussa
,
S.
, and
Badr
,
N.
,
2018
, “
Trio-v Wind Analyzer: A Generic Integral System for Wind Farm Suitability Design and Power Prediction Using Big Data Analytics
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051202
.
5.
Canale
,
M.
,
Fagiano
,
L.
, and
Milanese
,
M.
,
2010
, “
High Altitude Wind Energy Generation Using Controlled Power Kites
,”
IEEE Trans. Control Syst. Technol.
,
18
(
2
), pp.
279
293
. 10.1109/TCST.2009.2017933
6.
Diehl
,
M.
,
Ahrens
,
U.
, and
Schmehl
,
R.
,
2013
,
Airborn Wind Energy: Basic Concepts and Physical Foundations
,
Springer
,
Berlin
, pp.
3
22
.
7.
Loyd
,
M. L.
,
1979
, “
Crosswind Kite Power
,”
J. Energy
,
4
(
3
), pp.
106
111
. 10.2514/3.48021
8.
Fletcher
,
C. A. J.
, and
Roberts
,
B. W.
,
1979
, “
Electricity Generation From Jet Stream Winds
,”
J. Energy
,
3
(
4
), pp.
241
249
. 10.2514/3.48003
9.
Riegler
,
W. R. G.
, and
Harvath
,
E.
,
1983
, “
Transformation of Wind Energy by a High Altitude Power Plant
,”
J. Energy
,
7
, pp.
92
94
. 10.2514/3.62639
10.
Goela
,
R. A. J. S.
,
Somu
,
N.
, and
Vijaykumar
,
R.
,
1985
, “
Wind Loading Effects on a Catenary
,”
J. Wind Eng. Ind. Aerodyn.
,
21
, pp.
235
249
. 10.1016/0167-6105(85)90038-8
11.
Goela
,
R. V. J. S.
, and
Zimmermann
,
R. H.
,
1986
, “
Performance Characteristics of a Kite-powered Pump
,”
J. Energy Resour. Technol.
,
108
, pp.
188
193
. 10.1115/1.3231261
12.
Ockels
,
W.
,
2001
, “
Laddermill a Novel Concept to Exploit the Energy in the Airspace
,”
Aircraft Des.
,
4
, pp.
81
97
. 10.1016/S1369-8869(01)00002-7
13.
Archer
,
C. L.
, and
Caldeira
,
K.
,
2009
, “
Global Assessment of High-Altitude Wind Power
,”
Energies
,
2
, pp.
307
319
. 10.3390/en20200307
14.
Canale
,
M.
,
Fagiano
,
L.
, and
Milanese
,
M.
,
2009
, “
Kitegen a Revolution in Wind Energy Generation
,”
Energy
,
34
, pp.
355
361
. 10.1016/j.energy.2008.10.003
15.
Olinger
,
D. J.
, and
Goela
,
J. S.
,
2010
, “
Performance Characteristics of a 1 kw Scale Kite-powered System
,”
ASME J. Sol. Energy Eng.
,
132
, pp.
1
11
. 10.1115/1.4002082
16.
de Groot
,
R. S. S. G. C.
,
Breukels
,
J.
, and
Ockels
,
W. J.
,
2011
, “
Modeling Kite Flight Dynamics Using a Multibody Reduction Approach
,”
AIAA J. Guidance Control Dyn.
,
34
, pp.
1671
1682
. 10.2514/1.52686
17.
Fagiano
,
M. M. L.
, and
Dario
,
P.
,
2012
, “
Optimization of Airborn Wind Energy Generators
,”
Int. J. Robust Nonlinear Control
,
22
(
18
), pp.
2055
2083
. 10.1002/rnc.1808
18.
Ahrens
,
U.
,
Diehl
,
M.
, and
Schmehl
,
R.
,
2013
,
Combining Kites and Rail Technology Into a Traction Based Airborne Wind Energy Plant
,
Springer
,
Berlin
, pp.
443
458
.
19.
Williams
,
P.
,
Lansdorp
,
B.
, and
Ockels
,
W.
,
2008
, “
Optimal Crosswind Towing and Power Generation With Tethered Kites
,”
J. Guidance Control Dyn.
,
31
(
1
), pp.
81
93
. 10.2514/1.30089
20.
Aragotov
,
R. S. I.
,
2012
, “
Asymptotic Modeling of Unconstrained Control of a Tethered Power Kite Moving Along a Given Closed-Loop Spherical Trajectory
,”
J. Eng. Math.
,
72
(
1
), pp.
187
203
. 10.1007/s10665-011-9475-3
21.
Erhard
,
M.
, and
Strauch
,
H.
,
2012
, “
Control of Towing Kites for Seagoing Vessels
,”
IEEE Trans. Control Syst. Technol.
,
21
(
5
), pp.
1629
1640
.
22.
Gros
,
S.
,
Zanon
,
M.
, and
Diehl
,
M.
,
2013
, “
Control of Airborne Wind Energy Based on Nonlinear Model Predictive Control & Moving Horizon Estimation
,”
Proceeding of the European Control Conference ECC12
,
Zurich, Switzerland
,
July
.
23.
Ahrens
,
M. D. U.
, and
Schmehl
,
R.
,
2013
,
Airborne Wind Energy
,
Springer
,
New York
.
24.
Nejad
,
A. M.
,
Olinger
,
D. J.
, and
Tryggvasonl
,
G.
,
2014
, “
Numerical Modeling of Kites for Power Generation
,”
Proceeding of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting and 11th International Conference on Nanochannels, Microchannels, and Minichannels
,
Chicago, IL
,
Aug
.
25.
Breukels
,
J.
,
Schmehl
,
R.
, and
Ockels
,
W.
,
2013
, “Aeroelastic Simulation of Flexible Membrane Wings Based on Multibody Dynamics,”
Airborne Wind Energy
,
U.
Ahrens
,
M.
Diehl
, and
R.
Schmeh
, eds.,
Springer
,
Berlin
,
Chap. 16
, pp.
287
305
.
26.
Bosch
,
A.
,
Schmehl
,
R.
,
Tiso
,
P.
, and
Rixen
,
D.
,
2013
, “Nonlinear Aeroelasticity, Flight Dynamics and Control of a Flexible Membrane Traction Kite,”
Airborne Wind Energy
,
U.
Ahrens
,
M.
Diehl
, and
R.
Schmeh
, eds.,
Springer
,
Berlin
,
Chap. 17
, pp.
307
323
.
27.
Kim
,
J. D.
,
Li
,
Y.
, and
Li
,
X.
,
2013
, “
Simulation of Parachute FSI Using the Front Tracking Method
,”
J. Fluids Struct.
,
37
, pp.
100
119
. 10.1016/j.jfluidstructs.2012.08.011
28.
Kim
,
Y.
, and
Peskin
,
C. S.
,
2009
, “
3-D Parachute Simulation by the Immersed Boundary Method
,”
Comput. Fluids
,
38
(
6
), pp.
1080
1090
. 10.1016/j.compfluid.2008.11.002
29.
Tryggvason
,
G.
,
Scardovelli
,
R.
, and
Zaleski
,
S.
,
2011
,
Direct Numerical Simulations of Gas–Liquid Multiphase Flows
,
Cambridge University Press
,
Cambridge
.
30.
Luchsinger
,
R. H.
,
Ahrens
,
A.
,
Diehl
,
M.
, and
Schmehl
,
R.
,
2013
,
Pumping Cycle Kite Power
,
Springer
,
Berlin
, pp.
47
64
.
You do not currently have access to this content.