Abstract

Ion transport membrane (ITM) is considered to be one of the promising techniques for the separation of oxygen from the air for clean energy applications. Studying flow configurations of gases around Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) membrane is presented and discussed in this paper. The effects of the sweep mass flow rate and impingement configurations for the gases flow in the feed and permeation sides have been investigated. In this regard, flow with single or double impingement and impingement with different angles have been simulated and analyzed in order to identify the configurations that would provide the maximum permeation flux. Results show that increasing the sweep flow rate, directly, increases the oxygen permeation flux. It is also found that, in case of single impingement, decreasing the distance between the nozzle and the membrane (H), directly, increases the oxygen permeation flux for constant sweep side nozzle (slot) width (D). The permeation flux increases from around 2.9–3.66 µmole/cm2 s for the ratio H:D from1:1 to 1:4 (i.e., decreasing H to one-fourth of its value). Results show that the double impingement flow gives lower results than the single impingements by about 35.7%. The results also revealed that the optimum configuration is the parallel flow with vacuum in the sweeping side, which gives the highest permeation flux with an increase of more than 41% from that of the parallel configuration with a sweeping gas. Using carbon dioxide as a sweeping gas is better than helium.

References

1.
Al-Zareer
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2018
, “
Influence of Selected Gasification Parameters on Syngas Composition From Biomass Gasification
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
041803
. 10.1115/1.4039601
2.
Mansir
,
I. B.
,
Ben-Mansour
,
R.
, and
Habib
,
M. A.
,
2018
, “
Oxy-Fuel Combustion in a Two-Pass Oxygen Transport Reactor for Fire Tube Boiler Application
,”
Appl. Energy
,
229
, pp.
828
840
. 10.1016/j.apenergy.2018.08.057
3.
Habib
,
M. A.
,
Ahmed
,
P.
,
Ben-Mansour
,
R.
,
Mezghani
,
K.
,
Alam
,
Z.
,
Shao-Horn
,
Y.
, and
Ghoniem
,
A.
,
2015
, “
Experimental and Numerical Investigation of La2NiO4 Membranes for Oxygen Separation: Geometry Optimization and Model Validation
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
031102
. 10.1115/1.4029670
4.
Yücel
,
Ö
, and
Hastaoglu
,
M. A
,
2016
, “
Comprehensive Study of Steam Reforming of Methane in Membrane Reactors
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052204
. 10.1115/1.4032733
5.
Leyko
,
A. B.
, and
Gupta
,
A.
,
2013
, “
Temperature and Pressure Effects on Hydrogen Separation From Syngas
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
034502
. 10.1115/1.4024028
6.
Hong
,
J.
,
Kirchen
,
P.
, and
Ghoniem
,
A. F.
,
2012
, “
Numerical Simulation of Ion Transport Membrane Reactors: Oxygen Permeation and Transport and Fuel Conversion
,”
J. Membr. Sci.
,
407
, pp.
71
85
. 10.1016/j.memsci.2012.03.018
7.
Xu
,
S. J.
, and
Thomson
,
W. J.
,
1999
, “
Oxygen Permeation Rates Through Ion-Conducting Perovskite Membranes
,”
Chem. Eng. Sci.
,
54
(
17
), pp.
3839
3850
. 10.1016/S0009-2509(99)00015-9
8.
Behrouzifar
,
A.
,
Asadi
,
A. A.
,
Mohammadi
,
T.
, and
Pak
,
A.
,
2012
, “
Experimental Investigation and Mathematical Modeling of Oxygen Permeation Through Dense Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) Perovskite-Type Ceramic Membranes
,”
Ceram. Int.
,
38
(
6
), pp.
4797
4811
. 10.1016/j.ceramint.2012.02.068
9.
Park
,
J. H.
,
Magnone
,
E.
,
Kim
,
J. P.
, and
Choi
,
S. H.
,
2012
, “
Oxygen Permeation Performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ Membrane After Surface Modification
,”
Korean J. Chem. Eng.
,
29
(
2
), pp.
235
242
. 10.1007/s11814-011-0153-y
10.
Niehoff
,
P.
,
Baumann
,
S.
,
Schulze-Küppers
,
F.
,
Bradley
,
R.
,
Shapiro
,
I.
,
Meulenberg
,
W.
,
Withers
,
P.
, and
Vaßen
,
R.
,
2014
, “
Oxygen Transport Through Supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ Membranes
,”
Sep. Purif. Technol.
,
121
, pp.
60
67
. 10.1016/j.seppur.2013.07.002
11.
Han
,
L.
,
Deng
,
G.
,
Li
,
Z.
,
Fan
,
Y.
,
Zhang
,
H.
,
Wang
,
Q.
, and
Ileleji
,
K. E.
,
2018
, “
Simulation and Optimization of Ion Transfer Membrane Air Separation Unit in an IGCC Power Plant
,”
Appl. Therm. Eng.
,
129
, pp.
1478
1487
. 10.1016/j.applthermaleng.2017.10.131
12.
Kirchen
,
P.
,
Apo
,
D. J.
,
Hunt
,
A.
, and
Ghoniem
,
A. F.
,
2013
, “
A Novel Ion Transport Membrane Reactor for Fundamental Investigations of Oxygen Permeation and Oxy-Combustion Under Reactive Flow Conditions
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3463
3470
. 10.1016/j.proci.2012.07.076
13.
Nemitallah
,
M.
,
Habib
,
M.
, and
Mansour
,
R. B.
,
2013
, “
Investigations of Oxy-Fuel Combustion and Oxygen Permeation in an ITM Reactor Using a Two-Step Oxy-Combustion Reaction Kinetics Model
,”
J. Membr. Sci.
,
432
, pp.
1
12
. 10.1016/j.memsci.2012.12.028
14.
Shin
,
D.
, and
Kang
,
S.
,
2018
, “
Numerical Analysis of an Ion Transport Membrane System for Oxy–Fuel Combustion
,”
Appl. Energy
,
230
, pp.
875
888
. 10.1016/j.apenergy.2018.09.016
15.
Ben-Mansour
,
R.
,
Ahmed
,
P.
,
Habib
,
M. A.
, and
Jamal
,
A.
,
2018
, “
Oxy-Combustion of Liquid Fuel in an Ion Transport Membrane Reactor
,”
Int. J. Energy Environ. Eng.
,
9
(
1
), pp.
21
37
. 10.1007/s40095-017-0246-4
16.
Sanusi
,
Y. S.
,
Mokheimer
,
E. M.
, and
Habib
,
M. A.
,
2017
, “
Thermo-Economic Analysis of Integrated Membrane-SMR ITM-Oxy-Combustion Hydrogen and Power Production Plant
,”
Appl. Energy
,
204
, pp.
626
640
. 10.1016/j.apenergy.2017.07.020
17.
Nemitallah
,
M.
,
Habib
,
M.
,
Ben-Mansour
,
R.
, and
Ghoniem
,
A.
,
2014
, “
Design of an Ion Transport Membrane Reactor for Gas Turbine Combustion Application
,”
J. Membr. Sci.
,
450
, pp.
60
71
. 10.1016/j.memsci.2013.08.040
18.
Hong
,
J.
,
Kirchen
,
P.
, and
Ghoniem
,
A. F.
,
2013
, “
Interactions Between Oxygen Permeation and Homogeneous-Phase Fuel Conversion on the Sweep Side of an Ion Transport Membrane
,”
J. Membr. Sci.
,
428
, pp.
309
322
. 10.1016/j.memsci.2012.10.055
19.
Ahmed
,
P.
,
Habib
,
M. A.
,
Ben-Mansour
,
R.
,
Kirchen
,
P.
, and
Ghoniem
,
A. F.
,
2014
, “
CFD (Computational Fluid Dynamics) Analysis of a Novel Reactor Design Using Ion Transport Membranes for Oxy-Fuel Combustion
,”
Energy
,
77
, pp.
932
944
. 10.1016/j.energy.2014.10.003
20.
Habib
,
M.
,
Ahmed
,
P.
,
Ben-Mansour
,
R.
,
Badr
,
H. M.
,
Kirchen
,
P.
, and
Ghoniem
,
A.
,
2013
, “
Modeling of a Combined Ion Transport and Porous Membrane Reactor for Oxy-Combustion
,”
J. Membr. Sci.
,
446
, pp.
230
243
. 10.1016/j.memsci.2013.06.035
21.
Mezghani
,
K.
, and
Hamza
,
A.
,
2016
, “
Application of Ba0.5Sr0.5Co0.8Fe0.2O3−δ Membranes in an Oxy-Fuel Combustion Reactor
,”
J. Membr. Sci.
,
518
, pp.
254
262
. 10.1016/j.memsci.2016.07.001
22.
Engels
,
S.
,
Beggel
,
F.
,
Modigell
,
M.
, and
Stadler
,
H.
,
2010
, “
Simulation of a Membrane Unit for Oxyfuel Power Plants Under Consideration of Realistic BSCF Membrane Properties
,”
J. Membr. Sci.
,
359
(
1
), pp.
93
101
. 10.1016/j.memsci.2010.01.048
23.
Buysse
,
C.
,
Michielsen
,
B.
,
Middelkoop
,
V.
,
Snijkers
,
F.
,
Buekenhoudt
,
A.
,
Kretzschmar
,
J.
, and
Lenaerts
,
S.
,
2013
, “
Modeling of the Performance of BSCF Capillary Membranes in Four-End and Three-End Integration Mode
,”
Ceram. Int.
,
39
(
4
), pp.
4113
4123
. 10.1016/j.ceramint.2012.10.266
24.
Leo
,
A.
,
Liu
,
S.
, and
Diniz da Costa
,
J. C.
,
2011
, “
Production of Pure Oxygen From BSCF Hollow Fiber Membranes Using Steam Sweep
,”
Sep. Purif. Technol.
,
78
(
2
), pp.
220
227
. 10.1016/j.seppur.2011.02.006
25.
Shao
,
Z.
,
Yang
,
W.
,
Cong
,
Y.
,
Dong
,
H.
,
Tong
,
J.
, and
Xiong
,
G.
,
2000
, “
Investigation of the Permeation Behavior and Stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ Oxygen Membrane
,”
J. Membr. Sci.
,
172
(
1
), pp.
177
188
. 10.1016/S0376-7388(00)00337-9
26.
Leo
,
A.
,
Smart
,
S.
,
Liu
,
S.
, and
Diniz da Costa
,
J. C.
,
2011
, “
High Performance Perovskite Hollow Fibres for Oxygen Separation
,”
J. Membr. Sci.
,
368
(
1
), pp.
64
68
. 10.1016/j.memsci.2010.11.002
27.
Kovalevsky
,
A.
,
Buysse
,
C.
,
Snijkers
,
F.
,
Buekenhoudt
,
A.
,
Luyten
,
J.
,
Kretzschmar
,
J.
, and
Lenaerts
,
S.
,
2011
, “
Oxygen Exchange-Limited Transport and Surface Activation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ Capillary Membranes
,”
J. Membr. Sci.
,
368
(
1
), pp.
223
232
. 10.1016/j.memsci.2010.11.034
28.
Jiang
,
Q.
,
Nordheden
,
K. J.
, and
Stagg-Williams
,
S. M.
,
2011
, “
Oxygen Permeation Study and Improvement of Ba0.5Sr0.5Co0.8Fe0.2Ox Perovskite Ceramic Membranes
,”
J. Membr. Sci.
,
369
(
1
), pp.
174
181
. 10.1016/j.memsci.2010.11.073
29.
Wessel
,
C.
,
Lumey
,
M.-W.
, and
Dronskowski
,
R.
,
2011
, “
First-Principles Electronic-Structure Calculations on the Stability and Oxygen Conductivity in Ba0.5Sr0.5Co0.8Fe0.2O3−δ
,”
J. Membr. Sci.
,
366
(
1
), pp.
92
96
. 10.1016/j.memsci.2010.09.046
30.
Engels
,
S.
,
Markus
,
T.
,
Modigell
,
M.
, and
Singheiser
,
L.
,
2011
, “
Oxygen Permeation and Stability Investigations on MIEC Membrane Materials Under Operating Conditions for Power Plant Processes
,”
J. Membr. Sci.
,
370
(
1
), pp.
58
69
. 10.1016/j.memsci.2010.12.021
31.
Rutkowski
,
B.
,
Malzbender
,
J.
,
Beck
,
T.
,
Steinbrech
,
R.
, and
Singheiser
,
L.
,
2011
, “
Creep Behaviour of Tubular Ba0.5Sr0.5Co0.8Fe0.2O3−δ Gas Separation Membranes
,”
J. Eur. Ceram. Soc.
,
31
(
4
), pp.
493
499
. 10.1016/j.jeurceramsoc.2010.10.030
32.
Chanda
,
A.
,
Huang
,
B.
,
Malzbender
,
J.
, and
Steinbrech
,
R.
,
2011
, “
Micro-and Macro-Indentation Behaviour of Ba0.5Sr0.5Co0.8Fe0.2O3−d Perovskite
,”
J. Eur. Ceram. Soc.
,
31
(
3
), pp.
401
408
. 10.1016/j.jeurceramsoc.2010.10.022
33.
Efimov
,
K.
,
Halfer
,
T.
,
Kuhn
,
A.
,
Heitjans
,
P.
,
Caro
,
J.
, and
Feldhoff
,
A.
,
2010
, “
Novel Cobalt-Free Oxygen-Permeable Perovskite-Type Membrane
,”
Chem. Mater.
,
22
(
4
), pp.
1540
1544
. 10.1021/cm902882s
34.
Hayamizu
,
Y.
,
Kato
,
M.
, and
Takamura
,
H.
,
2014
, “
Effects of Surface Modification on the Oxygen Permeation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ Membrane
,”
J. Membr. Sci.
,
462
, pp.
147
152
. 10.1016/j.memsci.2014.03.038
35.
Ahmed
,
P.
,
Habib
,
M. A.
,
Ben-Mansour
,
R.
, and
Jamal
,
A.
,
2017
, “
Investigation of Oxygen Permeation Through Disc-Shaped BSCF Ion Transport Membrane Under Reactive Conditions
,”
Int. J. Energy Res.
,
41
(
7
), pp.
1049
1062
. 10.1002/er.3696
36.
Arnold
,
M.
,
Wang
,
H.
, and
Feldhoff
A.
,
2007
, “
Influence of CO2 on the Oxygen Permeation Performance and the Microstructure of Perovskite-Type (Ba0. 5Sr0. 5) (Co0.8Fe0.2)O3−δ Membranes
,”
J. Membr. Sci.
,
293
(
1–2
), pp.
44
52
. 10.1016/j.memsci.2007.01.032
37.
Zhang
,
Z.
,
Chen
,
D.
,
Gao
,
Y.
,
Yang
,
G.
,
Dong
,
F.
,
Chen
,
C.
,
Ciucci
,
F.
, and
Shao
,
Z.
,
2014
, “
A CO2-Tolerant Nanostructured Layer for Oxygen Transport Membranes
,”
RSC Adv.
,
4
(
49
): pp.
25924
25932
. 10.1039/C4RA03028A
38.
Habib
,
M. A.
,
Salaudeen
,
S. A.
,
Nemitallah
,
M. A.
,
Ben-Mansour
,
R.
, and
Mokheimer
,
E. M. A.
,
2016
, “
Numerical Investigation of Syngas Oxy-Combustion Inside a LSCF-6428 Oxygen Transport Membrane Reactor
,”
Energy
,
96
, pp.
654
665
. 10.1016/j.energy.2015.12.043
39.
Bouwmeester
,
H. J. M.
, and
Burggraaf
,
A. J.
,
1996
, “
Dense Ceramic Membranes for Oxygen Separation
,”
Membr. Sci. Technol.
,
4
, pp.
435
528
. 10.1016/S0927-5193(96)80013-1
40.
Sunarso
,
J.
,
Baumann
,
S.
,
Serra
,
J. M.
,
Meulenberg
,
W. A.
,
Liu
,
S.
,
Lin
,
Y. S.
, and
Diniz da Costa
,
J. C.
,
2008
, “
Mixed Ionic–Electronic Conducting (MIEC) Ceramic-Based Membranes for Oxygen Separation
,”
J. Membr. Sci.
,
320
(
1
), pp.
13
41
. 10.1016/j.memsci.2008.03.074
41.
Li
,
K.
,
2007
,
Ceramic Membranes for Separation and Reaction
,
John Wiley & Sons
,
Chichester, UK
.
42.
Bredesen
,
R.
,
Jordal
,
K.
, and
Bolland
,
O.
,
2004
, “
High-Temperature Membranes in Power Generation With CO2 Capture
,”
Chem. Eng. Process.
,
43
(
9
), pp.
1129
1158
. 10.1016/j.cep.2003.11.011
43.
ANSYS Inc.
,
2018
,
User’s Guide, FLUENT 19.1. Documentation
,
Ansys Inc.
,
Canonsburg, PA
.
You do not currently have access to this content.