Abstract

Two equations are developed to estimate laminar flame speed and ignition delay for different alkane mixtures at a range of engine-relevant conditions. Fuel mixtures of methane, ethane, propane, butane, and pentane were selected by analyzing the natural gas composition in a natural gas pipeline located in the Midwestern United States. The laminar flame speed and ignition delay were calculated for each mixture at each set of conditions using Cantera, a chemical kinetics solver. The range of initial conditions for laminar flame speed includes temperatures from 300 to 700 K, pressures from 1 to 40 bar, equivalence ratios from 0.4 to 1.2, and residual fractions from 0% to 20%. These data were then fit to a non-linear regression. The range of initial conditions for the ignition delay equation includes temperatures from 1100 to 2000 K, pressures from 1 to 40 bar, equivalence ratios from 0.4 to 1.15, and residual fractions from 0% to 20%. These data were fit to a previously developed equation. Sensitivity studies were conducted on each equation to quantify the impact of the independent variables on the target variable. This showed that, for laminar flame speed, the initial pressure, temperature, and equivalence ratio had the largest impact, with fuel composition having a lesser impact. For ignition delay, the temperature and pressure were shown to have the largest impact. There is a room for improvement, namely, increasing the fuel mixture variability and range of initial conditions, and developing a better fit to the data.

References

1.
Metghalchi
,
M.
, and
Keck
,
J.
,
1982
, “
Burning Velocities of Mixtures of air with Methanol, Isooctane, and Indolene at High Pressure and Temperature
,”
Combust. Flame
,
48
(
1
), pp.
191
210
. 10.1016/0010-2180(82)90127-4
2.
Liao
,
S.
,
Jiang
,
D.
, and
Cheng
,
Q.
,
2004
, “
Determination of Laminar Burning Velocities for Natural gas
,”
Fuel
,
83
(
9
), pp.
1247
1250
. 10.1016/j.fuel.2003.12.001
3.
Hernandez
,
J.
,
Lapuerta
,
M.
, and
Serrano
,
C.
,
2005
, “
Estimation of the Laminar Flame Speed of Producer Gas From Biomass Gasification
,”
Energy Fuels
,
19
(
5
), pp.
2172
2178
. 10.1021/ef058002y
4.
Hu
,
E.
,
Xiaotian
,
I.
,
Yizhen
,
C.
, and
Xie
,
Y.
,
2015
, “
Laminar Flame Speeds and Ignition Delay Times of Methane-Air Mixtures at Elevated Temperatures and Pressures
,”
Fuel
,
158
(
4
), pp.
1
10
. 10.1016/j.fuel.2015.05.010
5.
Ouimette
,
P.
, and
Seers
,
P.
,
2009
, “
Numerical Comparison of Premixed Laminar Flame Velocity of Methane and Wood Syngas
,”
Fuel
,
88
(
3
), pp.
528
533
. 10.1016/j.fuel.2008.10.008
6.
Gu
,
X. J.
,
Haq
,
M. Z.
,
Lawes
,
M.
, and
Woolley
,
R.
,
2000
, “
Laminar Burning Velocity and Markstein Lengths of Methane-Air Mixtures
,”
Combust. Flame
,
121
(
1–2
), pp.
41
58
. 10.1016/S0010-2180(99)00142-X
7.
Elia
,
M.
,
Ulinski
,
M.
, and
Metghalchi
,
M.
,
2000
, “
Laminar Burning Velocity of Methane-Air-Diluent Mixtures
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
190
196
. 10.1115/1.1339984
8.
Gülder
,
O.
,
1984
, “
Correlations of Laminar Combustion Data for Alternative S.I. Engine Fuels
,”
SAE Paper 841000.
9.
Amirante
,
R.
,
Distaso
,
E.
,
Tamburrano
,
P.
, and
Deneys Reitz
,
R.
,
2017
, “
Laminar Flame Speed Correlations for Methane, Ethane, Propane and Their Mixtures, and Natural gas and Gasoline for Spark-Ignition Engine Simulations
,”
Int. J. Engine Res.
,
18
(
9
), pp.
951
970
. 10.1177/1468087417720018
10.
Coppens
,
F.
,
De Ruyck
,
J.
, and
Konnov
,
A.
,
2007
, “
The Effects of Composition on Burning Velocity and Nitric Oxide Formation in Laminar Premixed Flames of CH4 + H2 + O2 + H + N2
,”
Combust. Flame
,
149
(
4
), pp.
409
417
. 10.1016/j.combustflame.2007.02.004
11.
Dirrenberger
,
P.
,
Le Gall
,
H.
,
Bounaceur
,
R.
,
Herbinet
,
O.
,
Glaude
,
P.
,
Konnov
,
A.
, and
Battin-Leclerc
,
F.
,
2011
, “
Measurements of Laminar Flame Velocity for Components of Natural gas
,”
Energy Fuels
,
25
(
9
), pp.
3875
3844
. 10.1021/ef200707h
12.
Shang
,
R.
,
Zhang
,
Y.
,
Zhu
,
M.
,
Zhang
,
Z.
, and
Zhang
,
D.
,
2017
, “
Semiemperical Correlation for Predicting Laminar Flame Speed of H2/CO/Air Flames with CO2 and N2 Dilution
,”
Energy Fuels
,
31
(
9
), pp.
9957
9966
. 10.1021/acs.energyfuels.7b00494
13.
Varghese
,
R.
,
Kolekar
,
H.
, and
Kumar
,
S.
,
2019
, “
Laminar Burning Velocities of H2/CO/CH4/CO2/N2-Air Mixtures at Elevated Temperatures
,”
Int. J. Hydrogen Energy
,
44
(
23
), pp.
12188
12199
. 10.1016/j.ijhydene.2019.03.103
14.
Gamma Technologies
,
2017
,
GT-SUITE: Engine Performance Application Manual
,
Gamma Technologies LLC
,
Westmont
.
15.
Hedrick
,
J.
, and
Jacobs
,
T.
(
2016
). “
Variable NG composition effects in LB 2S compressor engines Phase II—prediction enhancements
,”
Pipeline Research Council International
.
16.
Heywood
,
J.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill Education
,
New York
.
17.
Blizard
,
N.
, and
Keck
,
J.
,
1974
, “
Experimental and Theoretical Investigation of Turbulent Burning Model for Internal Combustion Engines
,”
Automotive Engineering Congress and Exposition
,
Detroit
18.
Livengood
,
J.
, and
Wu
,
P.
,
1955
, “
Correlation of Autoignition Phenomena in Internal Combustion Engines and Rapid Compression Machines
,”
Symp. (Int.) Combust.
,
5
(
1
), pp.
347
356
. 10.1016/S0082-0784(55)80047-1
19.
Lamoureux
,
N.
,
Paillard
,
C.
, and
Vaslier
,
V.
,
2002
, “
Low Hydrocarbon Mixtures Ignition Delay Times Investigation Behind Reflected Shock Waves
,”
Shock Waves
,
11
(
4
), pp.
309
322
. 10.1007/s001930100108
20.
Spadaccini
,
L. J.
, and
Colket
M. B.
, III
,
1994
, “
Ignition Delay Characteristics of Methane Fuels
,”
Prog. Energy Combust. Sci.
,
20
(
5
), pp.
431
460
. 10.1016/0360-1285(94)90011-6
21.
Assanis
,
D. N.
,
Filipi
,
Z. S.
,
Fiveland
,
S. B.
, and
Syrimis
,
M.
,
2003
, “
A Predictive Ignition Delay Correlation Under Steady-State and Transient Operation of a Direct Injection Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
125
(
2
), pp.
450
457
. 10.1115/1.1563238
22.
Pryor
,
O.
,
Barak
,
S.
,
Lopez
,
J.
,
Ninnemann
,
E.
,
Koroglu
,
B.
,
Nash
,
L.
, and
Vasu
,
S.
,
2017
, “
High Pressure Shock Tube Ignition Delay Time Measurements During Oxy-Methane Combustion With High Levels of CO2 Dilution
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042208
. 10.1115/1.4036254
23.
Brower
,
M.
,
Mathieu
,
O.
,
Petersen
,
E.
,
Donohoe
,
N.
,
Heufer
,
A.
,
Metcalfe
,
W.
,
Curran
,
H.
,
Bourque
,
G.
, and
Guthe
,
F.
,
2013
, “
Ignition Delay Time Experiments for Natural Gas/Hydrogen Blends at Elevated Pressure
,”
ASME Turbine Technical Conference and Exposition
,
San Antonio
.
24.
Soylu
,
S.
,
2005
, “
Prediction of Knock Limited Operating Conditions of a Natural gas Engine
,”
Energy Convers. Manage.
,
46
(
1
), pp.
121
138
. 10.1016/j.enconman.2004.02.014
25.
Douaud
,
A.
, and
Eyzat
,
P.
,
1978
, “
Four-Ocatane-Number Method for Predicting the Anti-Knock Behavior of Fuels and Engines
,”
SAE International.
26.
Bradley
,
D.
,
Morley
,
C.
, and
Walmsley
,
H. L.
,
2004
, “
Relevance of Research and Motor Octane Numbers to the Prediction of Engine Autoignition
,”
SAE Fuels & Lubricants Meeting & Exhibition
,
Toulouse, France
,
June 8–10
.
27.
Hedrick
,
J.
, and
Jacobs
,
T.
,
2015
, “
Variable Natural Gas Composition Effects in Lean Burn Two-Stroke Compressor Engines Phase I—Engine Response Final Report
,”
Pipeline Research Council International
.
28.
Choquette
,
G.
,
2014
, “
Analysis and Estimation of Stoichiometric Air-Fuel Ratio and Methane Number for Natural Gas
,”
Gas Machinery Conference
,
Nashville, TN
,
Oct. 5–8
.
29.
Yu
,
G.
,
Askari
,
O.
,
Hadi
,
F.
,
Wang
,
Z.
,
Metghalchi
,
H.
,
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2017
, “
Theoretical Prediction of Laminar Burning Speed and Ignition Delay Time of Gas-to-Liquid Fuel
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022202
. 10.1115/1.4033984
30.
Yelishala
,
S.
,
Wang
,
Z.
,
Metghalchi
,
H.
,
Levendis
,
Y.
,
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2019
, “
Effect of Carbon Dioxide on the Laminar Burning Speed of Propane-Air Mixtures
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082205
. 10.1115/1.4042411
31.
Healy
,
D.
,
Kalitan
,
D.
,
Aul
,
C.
,
Petersen
,
E.
,
Bourque
,
G.
, and
Curran
,
H.
,
2010
, “
Oxidation of C1—C5 Quinternary Natural gas Mixtures at High Pressures
,”
Energy Fuels
,
24
(
3
), pp.
1521
1528
. 10.1021/ef9011005
32.
Bourque
,
G.
,
Healy
,
D.
,
Curran
,
H.
,
Zinner
,
C.
,
Kalitan
,
D.
,
de Vries
,
J.
,
Aul
,
C.
, and
Petersen
,
E.
,
2010
, “
Ignition and Flame Speed Kinetics of Two Natural gas Blends With High Levels of Heavier Hydrocarbons
,”
ASME J. Eng. Gas Turbines Power
,
132
(
2
), p.
021504
. 10.1115/1.3124665
33.
Aul
,
C.
,
Metcalfe
,
W.
,
Burke
,
S.
,
Curran
,
H.
, and
Petersen
,
E.
,
2013
, “
Ignition and Kinetic Modeling of Methane and Ethane Fuel Blends With Oxygen: A Design of Experiments Approach
,”
Combust. Flame
,
160
(
7
), pp.
1153
1167
. 10.1016/j.combustflame.2013.01.019
34.
Askari
,
O.
,
Metghalchi
,
H.
,
Kazemzadeh Hannani
,
S.
,
Hemmati
,
H.
, and
Ebrahimi
,
R.
,
2014
, “
Lean Partially Premixed Combustion Investigation of Methane Direct-Injection Under Different Characteristic Parameters
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022202
. 10.1115/1.4026204
35.
Brower
,
M.
,
Petersen
,
E.
,
Metcalfe
,
W.
,
Curran
,
H.
,
Furi
,
M.
,
Bourque
,
G.
,
Aluri
,
N.
, and
Guthe
,
F.
,
2013
, “
Ignition Delay Time and Laminar Flame Speed Calculations for Natural Gas/Hydrogen Blends at Elevated Pressures
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
021504
. 10.1115/1.4007763
36.
Ibrahim
,
A.
, and
Ahmed
,
S.
,
2015
, “
Measurements of Laminar Flame Speeds of Alternative Gaseous Fuel Mixtures
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032209
. 10.1115/1.4029738
37.
Liu
,
J.
,
Bommisetty
,
H.
, and
Dumitrescu
,
C.
,
2019
, “
Experimental Investigation of a Heavy-Duty Compression Ignition Engine Retrofitted to Natural Gas Spark Ignition Operation
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112207
. 10.1115/1.4043749
You do not currently have access to this content.