Abstract

Geologic discontinuities usually exist in subsurface permeable formations, where multiple reservoir regions with distinct properties are separated by linear leaky faults. This kind of heterogeneous reservoir is usually called a linear composite reservoir. Although many analytical/semi-analytical linear composite models have been established to investigate the pressure behavior for linear composite reservoirs, almost all of these models were aimed at vertical wells without hydraulic fracturing and there are few analytical/semi-analytical models of fractured vertical wells in linear composite reservoirs. This paper first derives the Laplace-space point source solution for anisotropic linear composite systems separated by a partially communicating fault. Then, superposition principle and fracture discrete scheme are employed to acquire the semi-analytical solution for finite-conductivity fractured vertical (FCFV) wells in anisotropic linear composite reservoirs with a fault. The proposed solution is validated against numerical solutions under different reservoir scenarios. The characteristic of the pressure behavior for an FCFV well in anisotropic linear composite reservoirs with a fault is discussed in detail. The proposed model can be employed to obtain accurate pressure response with high computational efficiency. It is a good start to further develop analytical/semi-analytical models for other complex well types in an anisotropic linear composite reservoir with a fault.

References

1.
Bixel
,
H. C.
,
Larkin
,
B. K.
, and
Van Poollen
,
H. K.
,
1963
, “
Effect of Linear Discontinuities on Pressure Build-Up and Drawdown Behavior
,”
J. Pet. Technol.
,
15
(
8
), pp.
885
895
. 10.2118/611-PA
2.
Yaxley
,
L. M.
,
1987
, “
Effect of a Partially Communicating Fault on Transient Pressure Behavior
,”
SPE Form. Eval.
,
2
(
4
), pp.
590
598
. 10.2118/14311-PA
3.
Ambastha
,
A. K.
,
McLeroy
,
P. G.
, and
Grader
,
A. S.
,
1989
, “
Effects of a Partially Communicating Fault in a Composite Reservoir on Transient Pressure Testing
,”
SPE Form. Eval.
,
4
(
2
), pp.
210
218
. 10.2118/16764-PA
4.
Abbaszadeh
,
M.
, and
Cinco-Ley
,
H.
,
1995
, “
Pressure-Transient Behavior in a Reservoir With a Finite-Conductivity Fault
,”
SPE Form. Eval.
,
10
(
1
), pp.
26
32
. 10.2118/24704-PA
5.
Bourgeois
,
M. J.
,
Daviau
,
F. H.
, and
Boutaud de la Combe
,
J. L.
,
1996
, “
Pressure Behavior in Finite Channel-Levee Complexes
,”
SPE Form. Eval.
,
11
(
3
), pp.
177
184
. 10.2118/26461-PA
6.
Kuchuk
,
F. J.
, and
Habashy
,
T.
,
1997
, “
Pressure Behavior of Laterally Composite Reservoirs
,”
SPE Form. Eval.
,
12
(
1
), pp.
47
56
. 10.2118/24678-PA
7.
Anderson
,
E. I.
,
2006
, “
Analytical Solutions for Flow to a Well Through a Fault
,”
Adv. Water Res.
,
29
(
12
), pp.
1790
1803
. 10.1016/j.advwatres.2005.12.010
8.
Ezulike
,
O.
, and
Igbokoyi
,
A.
,
2012
, “
Horizontal Well Pressure Transient Analysis in Anisotropic Composite Reservoirs—A Three Dimensional Semi-Analytical Approach
,”
J. Pet. Sci. Eng.
,
96–97
, pp.
120
139
. 10.1016/j.petrol.2012.09.002
9.
Zeidouni
,
M.
,
2012
, “
Analytical Model of Leakage Through Fault to Overlying Formations
,”
Water Resour. Res.
,
48
(
12
), p.
W00N02
. 10.1029/2012WR012582
10.
Zeidouni
,
M.
,
2016
, “
Semi-Analytical Model of Pressure Perturbations Induced by Fault Leakage in Multilayer System
,”
J. Hydrol. Eng.
,
21
(
6
), p.
04016011
. 10.1061/(ASCE)HE.1943-5584.0001359
11.
Dewandel
,
B.
,
Aunay
,
B.
,
Maréchal
,
J. C.
,
Roques
,
C.
,
Bour
,
O.
,
Mougin
,
B.
, and
Aquilina
,
L.
,
2014
, “
Analytical Solutions for Analysing Pumping Tests in a Sub-Vertical and Anisotropic Fault Zone Draining Shallow Aquifers
,”
J. Hydrol.
,
509
, pp.
115
131
. 10.1016/j.jhydrol.2013.11.014
12.
Feng
,
G. Q.
,
Liu
,
Q. G.
,
Zhang
,
L. H.
, and
Zeng
,
Y.
,
2016
, “
Pressure Transient Behavior Analysis in a Dual-Porosity Reservoir With Partially Communicating Faults
,”
J. Nat. Gas Sci. Eng.
,
32
, pp.
373
379
. 10.1016/j.jngse.2016.04.046
13.
Molina
,
O. M.
, and
Zeidouni
,
M.
,
2018
, “
Analytical Model to Detect Fault Permeability Alteration Induced by Fault Reactivation in Compartmentalized Reservoirs
,”
Water Resour. Res.
,
54
(
8
), pp.
5841
5855
. 10.1029/2018WR022872
14.
Adibifard
,
M.
, and
Sharifi
,
M.
,
2018
, “
A New Semianalytical Pressure Transient Model t Interpret Well Test Data in Reservoirs With Limited Extent Barriers
,”
J. Porous Media
,
21
(
11
), pp.
1137
1162
. 10.1615/JPorMedia.2018028846
15.
Jia
,
P.
,
Cheng
,
L.
,
Huang
,
S.
, and
Wu
,
Y.
,
2016
, “
A Semi-Analytical Model for the Flow Behavior of Naturally Fractured Formations With Multi-Scale Fracture Networks
,”
J. Hydrol.
,
537
, pp.
208
220
. 10.1016/j.jhydrol.2016.03.022
16.
Ren
,
J.
, and
Guo
,
P.
,
2015
, “
A Novel Semi-Analytical Model for Finite-Conductivity Multiple Fractured Horizontal Wells in Shale Gas Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
24
, pp.
35
51
. 10.1016/j.jngse.2015.03.015
17.
Ren
,
J.
, and
Guo
,
P.
,
2015
, “
Anomalous Diffusion Performance of Multiple Fractured Horizontal Wells in Shale Gas Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
26
, pp.
642
651
. 10.1016/j.jngse.2015.07.003
18.
Ren
,
J.
, and
Guo
,
P.
,
2017
, “
Nonlinear Flow Model of Multiple Fractured Horizontal Wells With Stimulated Reservoir Volume Including the Quadratic Gradient Term
,”
J. Hydrol.
,
554
, pp.
155
172
. 10.1016/j.jhydrol.2017.09.005
19.
Ren
,
J.
, and
Guo
,
P.
,
2018
, “
Nonlinear Seepage Model for Multiple Fractured Horizontal Wells With the Effect of the Quadratic Gradient Term
,”
J. Porous Media
,
21
(
3
), pp.
223
239
. 10.1615/JPorMedia.v21.i3.30
20.
Ren
,
J.
,
Guo
,
P.
,
Peng
,
S.
, and
Ma
,
Z.
,
2018
, “
Performance of Multi-Stage Fractured Horizontal Wells With Stimulated Reservoir Volume in Tight Gas Reservoirs Considering Anomalous Diffusion
,”
Environ. Earth Sci.
,
77
(
22
), p.
768
. 10.1007/s12665-018-7947-8
21.
Wang
,
Y.
, and
Yi
,
X.
,
2018
, “
Flow Modeling of Well Test Analysis for a Multiple-Fractured Horizontal Well in Triple Media Carbonate Reservoir
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
19
(
5
), pp.
439
457
. 10.1515/ijnsns-2016-0075
22.
Wang
,
Y.
,
Zhang
,
C.
,
Chen
,
T.
, and
Ma
,
X.
,
2018
, “
Modeling the Nonlinear Flow for a Multiple-Fractured Horizontal Well With Multiple Finite-Conductivity Fractures in Triple Media Carbonate Reservoir
,”
J. Porous Media
,
21
(
12
), pp.
1283
1305
. 10.1615/JPorMedia.2018028663
23.
Luo
,
Z.
,
Zhang
,
N.
,
Zhao
,
L.
,
Ran
,
L.
, and
Zhang
,
Y.
,
2019
, “
Numerical Evaluation of Shear and Tensile Stimulation Volumes Based on Natural Fracture Failure Mechanism in Tight and Shale Reservoirs
,”
Environ. Earth Sci.
,
78
(
5
), p.
175
. 10.1007/s12665-019-8157-8
24.
Luo
,
Z.
,
Zhang
,
N.
,
Zhao
,
L.
,
Yao
,
L.
, and
Liu
,
F.
,
2018
, “
Seepage-Stress Coupling Mechanism for Intersections Between Hydraulic Fractures and Natural Fractures
,”
J. Pet. Sci. Eng.
,
171
, pp.
37
47
. 10.1016/j.petrol.2018.07.019
25.
Cinco
,
L. H.
,
Samaniego
,
V. F.
, and
Dominguez
,
A. N.
,
1978
, “
Transient Pressure Behavior for a Well With a Finite-Conductivity Vertical Fracture
,”
Soc. Pet. Eng. J.
,
18
(
4
), pp.
253
264
. 10.2118/6014-PA
26.
Rodriguez
,
F.
,
Cinco-Ley
,
H.
, and
Samaniego-V.
,
F.
,
1992
, “
Evaluation of Fracture Asymmetry of Finite-Conductivity Fractured Wells
,”
SPE Prod. Eng.
,
7
(
2
), pp.
233
239
. 10.2118/20583-PA
27.
Wang
,
L.
, and
Wang
,
X.
,
2014
, “
Type Curves Analysis for Asymmetrically Fractured Wells
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
023101
. 10.1115/1.4025712
28.
Zhang
,
Z.
,
He
,
S.
,
Liu
,
G.
,
Guo
,
X.
, and
Mo
,
S.
,
2014
, “
Pressure Buildup Behavior of Vertically Fractured Wells With Stress-Sensitive Conductivity
,”
J. Pet. Sci. Eng.
,
122
, pp.
48
55
. 10.1016/j.petrol.2014.05.006
29.
Ren
,
J.
, and
Guo
,
P.
,
2015
, “
Performance of Vertical Fractured Wells With Multiple Finite-Conductivity Fractures
,”
J. Geophys. Eng.
,
12
(
6
), pp.
978
987
. 10.1088/1742-2132/12/6/978
30.
Luo
,
W.
,
Tang
,
C.
, and
Zhou
,
Y.
,
2019
, “
A New Fracture-Unit Model and Its Application to a Z-Fold Fracture
,”
SPE J.
,
24
(
1
), pp.
319
333
. 10.2118/194024-PA
31.
Qin
,
J.
,
Cheng
,
S.
,
Li
,
P.
,
He
,
Y.
,
Lu
,
X.
, and
Yu
,
H.
,
2019
, “
Interference Well-Test Model for Vertical Well With Double-Segment Fracture in a Multi-Well System
,”
J. Pet. Sci. Eng.
,
183
, p.
106412
. 10.1016/j.petrol.2019.106412
32.
Wang
,
L.
,
Wang
,
X.
,
Li
,
J.
, and
Wang
,
J.
,
2013
, “
Simulation of Pressure Transient Behavior for Asymmetrically Finite-Conductivity Fractured Wells in Coal Reservoirs
,”
Transp. Porous Media
,
97
(
3
), pp.
353
372
. 10.1007/s11242-013-0128-z
33.
Wang
,
Y.
, and
Yi
,
X.
,
2017
, “
Transient Pressure Behavior of a Fractured Vertical Well With a Finite-Conductivity Fracture in Triple Media Carbonate Reservoir
,”
J. Porous Media
,
20
(
8
), pp.
707
722
. 10.1615/JPorMedia.v20.i8.30
34.
Deng
,
Q.
,
Nie
,
R. S.
,
Jia
,
Y. L.
,
Guo
,
Q.
,
Jiang
,
K. J.
,
Chen
,
X.
,
Liu
,
B. H.
, and
Dong
,
X. F.
,
2017
, “
Pressure Transient Behavior of a Fractured Well in Multi-Region Composite Reservoirs
,”
J. Pet. Sci. Eng.
,
158
, pp.
535
553
. 10.1016/j.petrol.2017.08.079
35.
Zhang
,
L.
,
Kou
,
Z.
,
Wang
,
H.
,
Zhao
,
Y.
,
Dejam
,
M.
,
Guo
,
J.
, and
Du
,
J.
,
2018
, “
Performance Analysis for a Model of a Multi-Wing Hydraulically Fractured Vertical Well in a Coalbed Methane Gas Reservoir
,”
J. Pet. Sci. Eng.
,
166
, pp.
104
120
. 10.1016/j.petrol.2018.03.038
36.
Xing
,
G.
,
Wang
,
M.
,
Wu
,
S.
,
Li
,
H.
, and
Tong
,
M.
,
2019
, “
Pressure Transient Analysis of Multiple Vertical Fractures in a Composite Reservoir Model
,”
Int. J. Oil, Gas Coal Technol.
,
21
(
2
), pp.
201
228
. 10.1504/IJOGCT.2019.099597
37.
Ozkan
,
E.
,
1988
, “
Performance of Horizontal Wells
,”
Ph.D. thesis
,
University of Tulsa
,
Tulsa, OK
.
38.
Van Everdingen
,
A. F.
, and
Hurst
,
W.
,
1949
, “
The Application of the Laplace Transformation to Flow Problems in Reservoirs
,”
Trans. AIME
,
186
, pp.
305
324
.
39.
Stehfest
,
H.
,
1970
, “
Numerical Inversion of Laplace Transforms
,”
Commun. ACM
,
13
(
1
), pp.
47
49
. 10.1145/361953.361969
40.
Berumen
,
S.
,
Tiab
,
D.
, and
Rodriguez
,
F.
,
2000
, “
Constant Rate Solutions for a Fractured Well With an Asymmetric Fracture
,”
J. Pet. Sci. Eng.
,
25
(
1–2
), pp.
49
58
. 10.1016/S0920-4105(99)00053-4
41.
Zhao
,
Y. L.
,
Zhang
,
L. H.
,
Zhao
,
J. Z.
,
Luo
,
J. X.
, and
Zhang
,
B. N.
,
2013
, “
“Triple Porosity” Modeling of Transient Well Test and Rate Decline Analysis for Multi-Fractured Horizontal Well in Shale gas Reservoirs
,”
J. Pet. Sci. Eng.
,
110
, pp.
253
262
. 10.1016/j.petrol.2013.09.006
You do not currently have access to this content.