Abstract

In this work, fundamental understanding of phase displacements involved in polymer-enhanced air foam is investigated which was not well discussed in the available literature. To do this, a series of foam injection experiments were performed on heterogeneous rock-look-alike micromodels in the presence and absence of a single fracture. The models were initially saturated with crude oil and experienced post polymer-enhanced foam injection process. We observed for the first time the mechanism of synergetic upstream snap-off and lamella division in the vicinity of the area where the permeability contrast was obvious. Observations showed two opposite effects of oil emulsioning and bubble coalescence when gas bubbles came in contact with oil in pore bodies. Fractal dimension analysis of front polymer-enhanced foam illustrates a noticeable improvement in oil displacement. Primary enhanced foam injection to oil saturated micromodel causes bubble coarsening which leads to less efficient oil displacement process. The lower the polymer concentration, the less stable the foam; consequently, the less efficient oil displacement is observed. Lower viscosity oil results in lower recovery efficiency as the stability of foam decreases. To shed light on the dynamic behavior of polymer–surfactant interface, some dynamic surface tension tests were conducted. Results showed that repellency between surfactant and polymer molecules causes surfactant molecules to be present on the surface making the initial dynamic interfacial tension (IFT) decrease. Results of this work help to better understand how polymer could enhance the efficiency of foam floods in heterogeneous systems.

References

1.
Lake
,
L. W.
,
Russell
,
J.
, and
Rossen
,
B.
,
2014
,
Fundamentals of Enhanced Oil Recovery
,
Society of Petroleum Engineers
.
2.
Sun
,
W.
, and
Tang
,
G. Q.
,
2006
, “
Visual Study of Water Injection in Low Permeable Sandstone
,”
J. Can. Pet. Technol
,
45
(
11
). 10.2118/06-11-02
3.
Fried
,
A. N.
,
1961
,
Foam-Drive Process for Increasing the Recovery of Oil
.
US Bureau of Mines, Rep. Inv. 5866
.
4.
Farajzadeh
,
R.
,
Andrianov
,
A.
,
Krastev
,
R.
,
Hirasaki
,
G. J.
, and
Rossen
,
W. R.
,
2012
, “
Foam-Oil Interaction in Porous Media: Implications for Foam Assisted Enhanced Oil Recovery
,”
Adv. Colloid Interface Sci.
,
183
, pp.
1
13
. 10.1016/j.cis.2012.07.002
5.
Bogdanovic
,
M.
,
Gajbhiye
,
R. N.
, and
Kam
,
S. I.
,
2009
, “
Experimental Study of Foam Flow in Horizontal Pipes: Two Flow Regimes and Its Implications
,”
Colloids Surf., A
,
344
(
1–3
), pp.
56
71
. 10.1016/j.colsurfa.2009.02.019
6.
Lenormand
,
R.
,
Zarcone
,
C.
, and
Sarr
,
A.
,
1983
, “
Mechanisms of the Displacement of One Fluid by Another in a Network of Capillary Ducts
,”
J. Fluid Mech.
,
135
, pp.
337
353
. 10.1017/S0022112083003110
7.
Mast
,
R. F.
,
1972
, “
Microscopic Behavior of Foam in Porous Media
,”
Fall Meeting of the Society of Petroleum Engineers of AIME
,
San Antonio, TX
,
Oct. 8–11
.
8.
Bullen
,
R. S.
, and
Bratrud
,
T. F.
,
1976
, “
Fracturing With Foam
,”
J. Can. Pet. Technol.
,
15
(
2
). 10.2118/76-02-02
9.
Szabo
,
M. T.
,
1979
, “
The Effect of Sulfonate/Polymer Interaction on Mobility Buffer Design
,”
Soc. Pet. Eng. J.
,
19
(
1
), pp.
5
14
. 10.2118/6201-PA
10.
Pope
,
G. A.
,
Tsaur
,
K.
,
Schechter
,
R. S.
, and
Wang
,
B.
,
1982
, “
The Effect of Several Polymers on the Phase Behavior of Micellar Fluids
,”
Soc. Pet. Eng. J.
,
22
(
6
), pp.
816
830
. 10.2118/8826-PA
11.
Huh
,
C.
, and
Rossen
,
W. R.
,
2006
, “
Approximate Pore-Level Modeling for Apparent Viscosity of Polymer-Enhanced Foam in Porous Media
,”
SPE/DOE Symposium on Improved Oil Recovery
,
Tulsa, OK
,
Apr. 22–26
.
12.
Sydansk
,
R. D.
,
1994
, “
Polymer-Enhanced Foams Part 2: Propagation Through High-Permeability Sandpacks
,”
SPE Adv. Technol. Ser.
,
2
(
2
), pp.
160
166
. 10.2118/25175-PA
13.
Aarra
,
G.
,
A
,
M.
,
Ormehaug
,
P.
, and
Skauge
,
A.
,
1997
, “
Foams for GOR Control—Improved Stability by Polymer Additives
,”
IOR 1997–9th European Symposium on Improved Oil Recovery
,
The Hague, Netherlands
,
Oct. 20–22
.
14.
Andrianov
,
A.
,
Farajzadeh
,
R.
,
Mahmoodi Nick
,
M.
,
Talanana
,
M.
, and
Zitha
,
P. L. J.
,
2012
, “
Immiscible Foam for Enhancing Oil Recovery: Bulk and Porous Media Experiments
,”
Ind. Eng. Chem. Res.
,
51
(
5
), pp.
2214
2226
. 10.1021/ie201872v
15.
Manlowe
,
D. J.
, and
Radke
,
C. J.
,
2017
, “
A Pore-Level Investigation of Foam/Oil Interactions in Porous Media
,”
SPE Reserv. Eng.
,
5
(
4
), pp.
495
502
. 10.2118/18069-pa
16.
Osei-Bonsu
,
K.
,
Grassia
,
P.
, and
Shokri
,
N.
,
2017
, “
Relationship Between Bulk Foam Stability, Surfactant Formulation and Oil Displacement Efficiency in Porous Media
,”
Fuel
,
203
, pp.
403
410
. 10.1016/j.fuel.2017.04.114
17.
Conn
,
C. A.
,
Ma
,
K.
,
Hirasaki
,
G. J.
, and
Biswal
,
S. L.
,
2014
, “
Visualizing Oil Displacement With Foam in a Microfluidic Device With Permeability Contrast
,”
Lab Chip
,
14
(
20
), pp.
3968
3977
. 10.1039/C4LC00620H
18.
Almajid
,
M. M.
, and
Kovscek
,
A. R.
,
2016
, “
Pore-Level Mechanics of Foam Generation and Coalescence in the Presence of Oil
,”
Adv. Colloid Interface Sci.
,
233
, pp.
65
82
. 10.1016/j.cis.2015.10.008
19.
Romero-Zeron
,
L.
, and
Kantzas
,
A.
,
2003
, “
Pore Level Displacement Mechanisms During Foam Flooding
,”
Canadian International Petroleum Conference
,
Calgary, Alberta
,
June 10–12
.
20.
Derikvand
,
Z.
, and
Riazi
,
M.
,
2016
, “
Experimental Investigation of a Novel Foam Formulation to Improve Foam Quality
,”
J. Mol. Liq.
,
224
, pp.
1311
1318
. 10.1016/j.molliq.2016.10.119
21.
Jones
,
S. A.
,
Getrouw
,
N.
, and
Vincent-Bonnieu
,
S.
,
2018
, “
Foam Flow in a Model Porous Medium: I. The Effect of Foam Coarsening
,”
Soft Matter
,
14
(
18
), pp.
3490
3496
. 10.1039/C7SM01903C
22.
Zhu
,
T.
,
Strycker
,
A.
,
Raible
,
C. J.
, and
Vineyard
,
K.
,
1998
, “
Foams for Mobility Control and Improved Sweep Efficiency in Gas Flooding
,”
SPE/DOE Improved Oil Recovery Symposium
,
Tulsa, OK
,
Apr. 19–22
.
23.
Falls
,
A. H.
,
Hirasaki
,
G. J.
,
Patzek
,
T. W.
,
Gauglitz
,
D. A.
,
Miller
,
D. D.
, and
Ratulowski
,
T.
,
1988
, “
Development of a Mechanistic Foam Simulator: The Population Balance and Generation by Snap-Off
,”
SPE Reserv. Eng.
,
3
(
3
), pp.
884
892
. 10.2118/14961-PA
24.
Falls
,
A. H.
,
Musters
,
J. J.
, and
Ratulowski
,
J.
,
1989
, “
The Apparent Viscosity of Foams in Homogeneous Bead Packs
,”
SPE Reserv. Eng.
,
4
(
2
), pp.
155
164
. 10.2118/16048-PA
25.
Friedmann
,
F.
,
Chen
,
W. H.
, and
Gauglitz
,
P. A.
,
1991
, “
Experimental and Simulation Study of High-Temperature Foam Displacement in Porous Media
,”
SPE Reserv. Eng.
,
6
(
1
), pp.
37
45
. 10.2118/17357-PA
26.
Kovscek
,
A. R.
, and
Radke
,
C. J.
,
1993
, “
Fundamentals of Foam Transport in Porous Media
,”
Topic Report
,
US Department of Energy
.
27.
Rossen
,
W. R.
,
1996
, “
“Foams in Enhanced Oil Recovery,” Foams: Theory
,”
Meas. Appl.
,
57
, pp.
413
464
.
28.
Yan
,
W.
,
Miller
,
C. A.
, and
Hirasaki
,
G. J.
,
2006
, “
Foam Sweep in Fractures for Enhanced Oil Recovery
,”
Colloids Surf., A
,
282
, pp.
348
359
. 10.1016/j.colsurfa.2006.02.067
29.
Javadi
,
A.
,
Mucic
,
N.
,
Karbaschi
,
M.
,
Won
,
J. Y.
,
Lotfi
,
M.
,
Dan
,
A.
,
Ulaganathan
,
V.
,
Gochev
,
G.
,
Makievski
,
A. V.
, and
Kovalchuk
,
V. I.
,
2013
, “
Characterization Methods for Liquid Interfacial Layers
,”
Eur. Phys. J. Spec. Top.
,
222
(
1
), pp.
7
29
. 10.1140/epjst/e2013-01822-3
30.
Djuve
,
J.
,
Pugh
,
R. J.
, and
Sjoblom
,
J.
,
2001
, “
Foaming and Dynamic Surface Tension of Aqueous Polymer/Surfactants Solutions 1: Ethyl(Hydroxyethyl) Cellulose and Sodium Dodecyl Sulphate
,”
Colloids Surf., A
,
186
(
3
), pp.
189
202
. 10.1016/S0927-7757(00)00787-1
31.
Kanani
,
M.
,
Mohammadi Alamooti
,
A. H.
,
Ghazanfari
,
M. H.
, and
Ghotbi
,
C.
,
2020
, “
Pore-Level Investigation of Heavy Crude Oil–Water/Chemicals Displacements in Heterogeneous Porous Media in the Presence of Ultrasounds
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
083002
. 10.1115/1.4046274
32.
Bell
,
C. G.
,
Breward
,
C. J. W.
,
Howell
,
P. D.
,
Penfold
,
J.
, and
Thomas
,
R. K.
,
2007
, “
Macroscopic Modeling of the Surface Tension of Polymer− Surfactant Systems
,”
Langmuir
,
23
(
11
), pp.
6042
6052
. 10.1021/la063714h
33.
Shokrollahi
,
A.
,
Ghazanfari
,
M. H.
, and
Badakhshan
,
A.
,
2014
, “
Application of Foam Floods for Enhancing Heavy Oil Recovery Through Stability Analysis and Core Flood Experiments
,”
Can. J. Chem. Eng.
,
92
(
11
), pp.
1975
1987
. 10.1002/cjce.22044
34.
Yekeen
,
N.
,
Idris
,
A. K.
,
Manan
,
M. A.
, and
Samin
,
A. M.
,
2017
, “
Experimental Study of the Influence of Silica Nanoparticles on the Bulk Stability of SDS-Foam in the Presence of Oil
,”
J. Dispers. Sci. Technol.
,
38
(
3
), pp.
416
424
. 10.1080/01932691.2016.1172969
35.
Jian
,
G.
,
Hou
,
Q.
, and
Zhu
,
Y.
,
2015
, “
Stability of Polymer and Surfactant Mixture Enhanced Foams in the Presence of Oil Under Static and Dynamic Conditions
,”
J. Dispers. Sci. Technol.
,
36
(
4
), pp.
477
488
. 10.1080/01932691.2014.907539
36.
Telmadarreie
,
A.
, and
Trivedi
,
J. J.
,
2016
, “
Post-Surfactant CO2-Foam/Polymer-Enhanced Foam Flooding for Heavy Oil Recovery: Pore-Scale Visualization in Fractured Micromodel
,”
Transp. Porous Media
,
113
(
3
), pp.
717
733
. 10.1007/s11242-016-0721-z
37.
Farzaneh
,
S. A.
, and
Sohrabi
,
M.
,
2018
, “
Visual Investigation of Improvement in Extra-Heavy Oil Recovery by Borate-Assisted CO2-Foam Injection
,”
Transp. Porous Media
,
122
(
2
), pp.
487
513
. 10.1007/s11242-018-1016-3
38.
Chang
,
S. H.
,
Owusu
,
L. A.
,
French
,
S. B.
, and
Kovarik
,
F. S.
,
1990
, “
The Effect of Microscopic Heterogeneity on CO2-Foam Mobility: Part 2-Mechanistic Foam Simulation
,”
SPE/DOE Enhanced Oil Recovery Symposium
,
Tulsa, OK
,
Apr. 22–25
.
39.
Hiraski
,
G. J.
,
1989
, “
The Steam-Foam Process
,”
J. Pet. Technol.
,
41
(
5
), pp.
449
456
. 10.2118/19505-PA
40.
Gauteplass
,
J.
,
Chaudhary
,
K.
,
Kovscek
,
A. R.
, and
Fernø
,
M. A.
,
2015
, “
Pore-Level Foam Generation and Flow for Mobility Control in Fractured Systems
,”
Colloids Surf., A
,
468
, pp.
184
192
. 10.1016/j.colsurfa.2014.12.043
41.
Fanchi
,
J. R.
, and
Christiansen
,
R. L.
,
1989
, “
Applicability of Fractals to the Description of Viscous Fingering
,”
SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers
,
San Antonio, TX
,
Oct. 8–11
.
42.
Wang
,
F.
,
Li
,
Z.
,
Chen
,
H.
,
Lv
,
Q.
,
Silagi
,
W.
, and
Chen
,
Z.
,
2017
, “
Fractal Characterization of Dynamic Structure of Foam Transport in Porous Media
,”
J. Mol. Liq.
,
241
, pp.
675
683
. 10.2118/19782-MS
You do not currently have access to this content.