Abstract

Aluminized propellants are frequently used in solid rocket motors (SRMs) to increase specific impulse. However, as the propellant combusts, the aluminum is oxidized into aluminum oxide (Al2O3), it agglomerates into molten droplets that attach to the outside wall of the rocket nozzle. This phenomenon negatively impacts ballistics performance because the droplets remain attached to the inner wall of propulsion chambers. This buildup of particles tends to erode the wall, decreasing the performance and sustainability of the rocket. This study presents both experimental and computational fluid dynamics (CFD) to investigate the relationship between gas velocity and molten particle size for the vertically arrayed combustion chamber. Also, the Weber number and the Froude number are monitored to explain the breakup phenomenon and the condition of alumina flow in the whole testing channel. This study focused mainly on the vertical arrangement of the propulsion chamber with the cold experimental and simulation investigating the role of the liquid water in addition to a comparison with the horizontal chamber case. Unlike the horizontal setup, a greater number of droplets with smaller average droplet diameter present in the vertical setup; however, Froude number follows the same trend as for the horizontal C-D nozzle setup.

References

1.
Xiao
,
Y.
, and
Amano
,
R.
,
2006
, “
Aluminized Composite Solid Propellant Particle Path in the Combustion Chamber of a Solid Rocket Motor
,”
WIT Trans. Eng. Sci.
,
52
, pp.
153
164
. 10.2495/AFM06016
2.
Rapp
,
D.
,
1990
, “
High Energy-Density Liquid Rocket Fuel Performance
,”
26th Joint Propulsion Conference
,
Orlando, FL
, pp.
1967
1968
.
3.
Thakre
,
P.
, and
Yang
,
V.
,
2009
, “
Chemical Erosion of Refractory-Metal Nozzle Inserts in Solid-Propellant Rocket Motors
,”
J. Propul. Power
,
25
(
1
), pp.
40
50
. 10.2514/1.37922
4.
Boraas
,
S.
,
1984
, “
Modeling Slag Deposition in the Space Shuttle Solid Rocket Motor
,”
J. Spacecr. Rockets
,
21
(
1
), pp.
47
54
. 10.2514/3.8606
5.
Wong
,
E.
,
1968
, “
Solid Rocket Nozzle Design Summary
,”
4th Propulsion Joint Specialist Conference
, pp.
654
655
.
6.
Amano
,
R. S.
,
Yen
,
Y. H.
,
Miller
,
T. C.
,
Ebnit
,
A.
, and
Lightfoot
,
M.
,
Sankaran
,
V.
,
2016
, “
Study of Liquid Breakup Process in Solid Rocket Motor Nozzle
,”
J. Spacecr. Rockets
,
53
(
5
), pp.
1
13
. 10.2514/1.A33393
7.
Xiao
,
Y.
,
Amano
,
R.
,
Cai
,
T.
, and
Li
,
J.
,
2005
, “
New Method to Determine the Velocities of Particles on a Solid Propellant Surface
,”
ASME J. Heat. Transfer
,
127
(
9
), pp.
1057
1061
. 10.1115/1.1999652
8.
Xiao
,
Y.
,
Amano
,
R. S.
,
Cai
,
T.
,
Li
,
J.
, and
He
,
G.
,
2003
, “
Particle Velocity on Solid-Propellant Surface Using X-Ray Real-Time Radiography
,”
AIAA J.
,
41
(
9
), pp.
1763
1770
. 10.2514/2.7294
9.
Li
,
Z.
,
Wang
,
N.
,
Shi
,
B.
,
Li
,
S.
, and
Yang,
R.
,
2019
, “
Effects of Particle Size on Two-Phase Flow Loss in Aluminized Solid Rocket Motors
,”
Acta Astronaut.
,
159
(
1
), pp.
33
40
. 10.1016/j.actaastro.2019.03.022
10.
Wang
,
J.-Y.
,
Yang
,
Z.-L.
, and
Wang
,
M.-J.
,
2018
, “
Investigation of Nozzle Two-Phase Flow Characteristics for Nanometer Aluminum Powder Combustion in a Metal Fuel Motor
,”
Powder Technol.
,
339
(
1
), pp.
446
458
. 10.1016/j.powtec.2018.08.039
11.
Amano
,
R. S.
, and
Yen
,
Y. H.
,
2016
, “
Investigation of Alumina Flow Breakup Process in Solid Rocket Propulsion Chamber
,”
AIAA 2016 SciTech. No. 2318567
.
12.
Amano
,
R. S.
, and
Yen
,
Y.-H.
,
2015
, “
Study of Alumina Flow in a Propulsion Chamber
,”
51st AIAA/SAE/ASEE Joint Propulsion Conference
, p.
4225
.
13.
Bravo
,
L.
,
Wijeyakulasuriya
,
S.
,
Pomraning
,
E.
,
Senecal
,
P. K.
, and
Kweon
,
C.-B.
,
2016
, “
Large Eddy Simulation of High Reynolds Number Nonreacting and Reacting JP-8 Sprays in a Constant Pressure Flow Vessel With a Detailed Chemistry Approach
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032207
. 10.1115/1.4032901
14.
Ren
,
X.
,
Zhang
,
L.
, and
Ji
,
Z.
,
2017
, “
Large Eddy Simulation of Diesel Spray Combustion With a Multi-Component Drop Vaporization Model
,”
ASME 2017 Internal Combustion Engine Division Fall Technical Conference
,
American Society of Mechanical Engineers
, p.
V002T006A009
.
15.
Ishay
,
L.
,
Bieder
,
U.
,
Ziskind
,
G.
, and
Rashkovan
,
A.
,
2017
, “
Nozzle Geometry Effect on Stratified Layer Erosion by Vertical Turbulent Jet
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
3
(
3
), p.
030902
. 10.1115/1.4035693
16.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
. 10.1016/0021-9991(81)90145-5
17.
Chen
,
W. L.
,
Abbas
,
A. I.
,
Ott
,
R. N.
, and
Amano
,
R. S.
,
2020
, “
Investigation of Liquid Breakup Process Solid Rocket Motor Part A: Horizontal CD Nozzle
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
052102
. 10.1115/1.4046081
18.
Abbas
,
A. I.
,
Qandil
,
M. D.
,
Al-Haddad
,
M.
, and
Amano
,
R. S.
,
2020
, “
Investigation of Horizontal Micro Kaplan Hydro Turbine Performance Using Multi-Disciplinary Design Optimization
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
052101
. 10.1115/1.4045821
19.
Abbas
,
A. I.
, and
Amano
,
R. S.
,
2017
, “
Optimization of Intake and Draft Tubes of a Kaplan Micro Hydro-Turbine
,”
15th International Energy Conversion Engineering Conference
,
Atlanta, GA
, AIAA Propulsion and Energy Forum, pp.
4807
4820
.
You do not currently have access to this content.