Abstract

The present work investigates the effects of various guide vane designs on the heat transfer enhancement of rotating U-duct configuration with parallel 45-deg ribs. The ribs were installed on the bottom wall of the channel, which has a constant heat flux boundary condition. The channel has a square cross section with a 5.08 cm hydraulic diameter. The first and second passes are 514 mm and 460 mm, respectively. The range of Reynolds number for turbulent flow is up to 35,000. The channel rotates at various speeds up to 600 rpm, which brings the maximum rotation number of 0.75. Several computational fluid dynamics simulations are carried out for this study to understand the effect of guide vanes on flow and heat transfer in serpentine channels under various operating conditions.

References

1.
Burberi
,
E.
,
Massini
,
D.
,
Cocchi
,
L.
,
Mazzei
,
L.
,
Andreini
,
A.
, and
Facchini
,
B.
,
2016
, “
Effect of Rotation on a Gas Turbine Blade Internal Cooling System: Numerical Investigation
,”
ASME J. Turbomach.
,
139
(
3
), p.
031005
. 10.1115/1.4034799
2.
Yongniang
,
Y.
, and
Fuchs
,
L.
,
1993
, “
Numerical Study of Viscous Flow in a Rotating Rectangular Channel
,”
Int. J. Eng. Sci.
,
31
(
6
), pp.
873
881
. 10.1016/0020-7225(93)90099-G
3.
Johnson B
,
V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1992
, “
Heat Transfer in Rotating Serpentine Passages With Trips Skewed to the Flow
,”
ASME J. Turbomach.
,
116
(
1
), pp.
113
123
. 10.1115/1.2928265
4.
Saravani
,
M. S.
,
Dipasquale
,
N. J.
,
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2019
, “
Heat Transfer in Internal Cooling Channels of Gas Turbine Blades: Buoyancy and Density Ratio Effects
,”
ASME J. Energy. Resour. Technol.
,
141
(
11
), p.
112001
. 10.1115/1.4043654
5.
Taslim
,
M. E.
,
Bondi
,
L. A.
, and
Kercher
,
D. M.
,
1991
, “
Experimental Investigation of Heat Transfer in an Orthogonally Rotating Channel Roughened With 45 deg Criss-Cross Ribs on Two Opposite Walls
,”
ASME J. Turbomach.
,
113
(
3
), pp.
346
353
. 10.1115/1.2927882
6.
Taslim
,
M. E.
, and
Spring
,
S. D.
,
1994
, “
Effect od Turbulator Profile and Spacing on Heat Transfer and Friction in a Channel
,”
J. Thermophys. Heat Transfer
,
8
(
3
), pp.
555
562
. 10.2514/3.578
7.
Huh
,
M.
,
Lei
,
J.
, and
Han
,
J.-C.
,
2012
, “
Influence of Channel Orientation on Heat Transfer in a Two-Pass Smooth and Ribbed Rectangular Channel (AR = 2:1) Under Large Rotation Numbers
,”
ASME J. Turbomach.
,
134
(
1
), p.
011022
. 10.1115/1.4003172
8.
Moon
,
H. K.
,
O’Connell
,
T.
, and
Glezer
,
B.
,
2000
, “
Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage
,”
ASME J. Eng. Gas Turbine Power
,
122
(
2
), pp.
307
313
. 10.1115/1.483208
9.
Han
,
J. C.
,
Glicksman
,
L. R.
, and
Rohsenow
,
W. M.
,
1978
, “
An Investigation of Heat Transfer and Friction for Rib-Roughened Surfaces
,”
Int. J. Heat. Mass Transfer
,
21
(
8
), pp.
321
328
. 10.1016/0017-9310(78)90113-8
10.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2001
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor and Francis
,
NewYork
.
11.
Han
,
J. C.
,
1984
, “
Heat Transfer and Friction in Channels With Two Opposite Rib-Roughened Walls
,”
ASME J. Heat Transfer
,
106
(
4
), pp.
774
781
. 10.1115/1.3246751
12.
Han
,
J.
,
1988
, “
Heat Transfer and Friction Characteristics in Rectangular Channels With Rib Turbulators
,”
ASME J. Heat Transfer
,
110
(
2
), pp.
321
328
. 10.1115/1.3250487
13.
Taslim
,
M. E.
, and
Wadsworth
,
C. M.
,
1997
, “
An Experimental Investigation of the Rib Surface-Averaged Heat Transfer Coefficient in a Rib-Roughened Square Passage
,”
ASME J. Turbomach.
,
119
(
2
), pp.
381
389
. 10.1115/1.2841122
14.
Liu
,
Y.-H.
,
Wright
,
L. M.
,
Fu
,
W.-L.
, and
Han
,
J.-C.
,
2006
, “
Rib Spacing Effect on Heat Transfer and Pressure Loss in a Rotating Two-Pass Rectangular Channel (AR = 1:2) With 45-Degree Angled Ribs
,”
ASME Turbo Expo 2006 Power Land, Sea, Air
,
Spain
,
May 8–11
, Vol.
2006
, pp.
363
373
.
15.
Rashidi
,
S.
,
Hormozi
,
F.
,
Sundén
,
B.
, and
Mahian
,
O.
,
2019
, “
Energy Saving in Thermal Energy Systems Using Dimpled Surface Technology-A Review on mechanisms and Applications
,”
J. Appl. Energy
,
250
, pp.
1491
1547
. 10.1016/j.apenergy.2019.04.168
16.
Cunha
,
F. J.
,
2006
,
Heat Transfer Analysis—Introduction. Gas Turbine Handbook
,
CRC Press
,
Cleveland, OH
.
17.
Schüler
,
M.
,
Zehnder
,
F.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
, and
Neumann
,
S. O.
,
2010
, “
The Effect of Turning Vanes on Pressure Loss and Heat Transfer of a Ribbed Rectangular Two-Pass Internal Cooling Channel
,”
ASME J. Turbomach.
,
133
(
2
), p.
021017
. 10.1115/1.4000550
18.
Bunker
,
R. S.
,
2008
, “
The Augmentation of Internal Blade Tip-Cap Cooling by Arrays of Shaped Pins
,”
ASME J. Turbomach.
,
130
(
4
), pp.
041007
. 10.1115/1.2812333
19.
Park
,
J. S.
,
Lee
,
D. M.
,
Lee
,
D. H.
,
Lee
,
S.
,
Kim
,
B. S.
, and
Cho
,
H. H.
,
2017
, “
Thermal Performance in a Rotating Two-Passage Channel With Various Turning Guide Vanes
,”
J. Mech. Sci. Technol.
,
31
(
7
), pp.
3581
3591
. 10.1007/s12206-017-0645-8
20.
Amano
,
R.S.
,
Beyhaghi
,
S.
,
Morrison
,
M.
,
Saravani
,
M. S.
, and
Dong
,
P.
,
2017
, “
Computational and Experimental Investigation of Heat Transfer in Stationary and Rotating Internal Cooling Ducts With High Rotation Numbers
,”
15th International Energy Conversion Engineeting Conference
,
Atlanta, GA
,
July 10–12
.
21.
Saravani
,
M. S.
,
Beyhaghi
,
S.
,
DiPasquale
,
N. J.
, and
Amano
,
R. S.
,
2018
, “
Experimental Analysis of Heat Transfer in Stationary and Rotating Internal Cooling Channels
,”
AIAA Aerospace Scicences Meeting
,
Kissimmee, FL
,
Jan. 8–12
, p.
1477
.
22.
Sewall
,
E. A.
, and
Tafti
,
D. K.
,
2005
, “
Large-Eddy Simulation of Flow and Heat Transfer in the Developing Flow Region of a Rotating Gas Turbine Blade Internal Cooling Duct With Coriolis and Buoyancy Forces
,”
ASME J. Turbomach.
,
130
(
1
), p.
011005
.10.1115/1.2437779
23.
Bose
,
S. T.
, and
Moin
,
P.
,
2014
, “
A Dynamic Slip Boundary Condition for Wall-Modeled Large-Eddy Simulation
,”
Phys. Fluids
,
26
(
1
), p.
015104
. 10.1063/1.4849535
24.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
”,
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
. 10.1023/A:1009995426001
25.
Laney
,
C. B.
,
1998
,
Computational Gasdynamics
,
Cambridge University Press
,
Cambridge, UK
.
26.
Wheeler
,
A. J.
, and
Ganji
,
A. R.
,
2010
,
Introduction to Engineering Experimentation
, 3rd ed.,
Pearson Higher Education
,
New Jersey
.
You do not currently have access to this content.