Abstract

Gaseous hydrocarbon (HC) fuels or alcohols can partially replace diesel in compression ignition engines through the dual-fuel mode of combustion. However, such dual-fuel mode faces the challenges of high carbon monoxide (CO) and unburnt HC emissions and low thermal efficiency, particularly at low loads. The objective of this study is to achieve dual-fuel engine thermal efficiency and emissions better than those of a diesel mode while utilizing alternative fuels. A new approach consisting of a combined strategy using dimethyl ether (DME) as a co-fumigant with liquefied petroleum gas (LPG) and deployment of a customized oxidation catalyst in a single-cylinder diesel engine is presented. DME is a high-cetane oxygenate which can be produced from renewable biomass feedstock. DME and LPG are miscible, and they can be handled and stored similarly. The diesel energy replacements (36–64%) by DME and LPG are studied at low-load to part-load conditions. A customized oxidation catalyst is benchmarked with a commercial one. The dual-fuel combustion exhibits low-temperature and high-temperature reactions with significant improvement in combustion phasing. The dual-fuel mode outperforms the diesel mode and has higher thermal efficiency. The dual-fuel mode with the customized oxidation catalyst achieves emissions of CO, HC, and smoke lower than those of the diesel mode by up to 94%, 89%, and 94%, respectively. The dual-fuel engine effectively utilizes the alternative fuels and achieves drastically reduced emissions and higher thermal efficiency as compared with the diesel mode.

References

1.
Saleh
,
H. E.
,
2008
, “
Effect of Variation in LPG Composition on Emissions and Performance in a Dual-Fuel Diesel Engine
,”
Fuel
,
87
(
13–14
), pp.
3031
3039
. 10.1016/j.fuel.2008.04.007
2.
Ganesan
,
S.
, and
Ramesh
,
A.
,
2001
,
Investigation on the Use of Water—Diesel Emulsion in a LPG—Diesel Dual-Fuel Engine.
SAE Technical Paper No. 2001-28-0032.
3.
Polk
,
A. C.
,
Carpenter
,
C. D.
,
Guerry
,
E. S.
,
Dwivedi
,
U.
,
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
, and
Rowland
,
Z. L.
,
2014
, “
Diesel-Ignited Propane Dual Fuel Low Temperature Combustion in a Heavy-Duty Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
091509
.10.1115/1.4027189
4.
Shoemaker
,
N. T.
,
Gibson
,
C. M.
,
Polk
,
A. C.
,
Krishnan
,
S. R.
, and
Srinivasan
,
K. K.
,
2012
, “
Performance and Emissions Characteristics of Bio-Diesel (B100)-Ignited Methane and Propane Combustion in a Four Cylinder Turbocharged Compression Ignition Engine
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
082803
. 10.1115/1.4005993
5.
Gibson
,
C. M.
,
Polk
,
A. C.
,
Shoemaker
,
N. T.
,
Srinivasan
,
K. K.
, and
Krishnan
,
S. R.
,
2011
, “
Comparison of Propane and Methane Performance and Emissions in a Turbocharged Direct Injection Dual Fuel Engine
,”
ASME J. Eng. Gas Turbines Power
,
133
(
9
), p.
092806
. 10.1115/1.4002895
6.
Prabhakar
,
B.
,
Jayaraman
,
S.
,
Vander Wal
,
R
, and
Boehman
,
A.
,
2015
, “
Experimental Studies of High Efficiency Combustion With Fumigation of Dimethyl Ether and Propane Into Diesel Engine Intake Air
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
041505
. 10.1115/1.4028616
7.
Mitchell
,
R. H.
, and
Olsen
,
D. B.
,
2018
, “
Extending Substitution Limits of a Diesel–Natural Gas Dual Fuel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052202
. 10.1115/1.4038625
8.
Sarkar
,
A.
, and
Saha
,
U. K.
,
2018
, “
Role of Global Fuel-Air Equivalence Ratio and Preheating on the Behaviour of a Biogas Driven Dual-Fuel Diesel Engine
,”
Fuel
,
232
, pp.
743
754
. 10.1016/j.fuel.2018.06.016
9.
Nord
,
A. J.
,
Hwang
,
J. T.
, and
Northrop
,
W. F.
,
2017
, “
Emissions From a Diesel Engine Operating in a Dual-Fuel Mode Using Port-Fuel Injection of Heated Hydrous Ethanol
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022204
.
10.
Poonia
,
M.
,
Ramesh
,
A.
, and
Gaur
,
R.
,
1999
,
Experimental Investigation of the Factors Affecting the Performance of a LPG—Diesel Dual-Fuel Engine.
SAE Technical Paper No. 1999-01-1123.
11.
Imran
,
A.
,
Varman
,
M.
,
Masjuki
,
H. H.
, and
Kalam
,
M. A.
,
2013
, “
Review on Alcohol Fumigation on Diesel Engine: A Viable Alternative Dual-Fuel Technology for Satisfactory Engine Performance and Reduction of Environment Concerning Emission
,”
Renew. Sustain. Energy Rev.
,
26
, pp.
739
751
. 10.1016/j.rser.2013.05.070
12.
Fang
,
W.
,
Huang
,
B.
,
Kittelson
,
D. B.
, and
Northrop
,
W. F.
,
2014
, “
Dual-Fuel Diesel Engine Combustion With Hydrogen, Gasoline, and Ethanol as Fumigants: Effect of Diesel Injection Timing
,”
ASME J. Eng. Gas Turbines Power
,
136
(
8
), p.
081502
. 10.1115/1.4026655
13.
Di Iorio
,
S.
,
Magno
,
A.
,
Mancaruso
,
E.
, and
Vaglieco
,
B. M.
,
2016
,
Performance, Gaseous and Particle Emissions of a Small Compression Ignition Engine Operating in Diesel/Methane Dual Fuel Mode.
SAE Technical Paper No. 2016-01-0771.
14.
Dishy
,
A.
,
You
,
T.
,
Iwashiro
,
Y.
,
Nakayama
,
S.
,
Kihara
,
R.
, and
Saito
,
T.
,
1995
,
Controlling Combustion and Exhaust Emissions in a Direct-Injection Diesel Engine Dual-Fueled With Natural Gas.
SAE Technical Paper No. 1995:952436.
15.
Bittner
,
R. W.
, and
Aboujaoude
,
F. W.
,
1992
, “
Catalytic Control of NOx, CO, and NMHC Emissions From Stationary Diesel and Dual-Fuel Engines
,”
ASME J. Eng. Gas Turbines Power
,
114
(
3
), pp.
597
601
. 10.1115/1.2906629
16.
Johnson
,
D.
,
Darzi
,
M.
,
Clark
,
N.
,
Nix
,
A.
, and
Heltzel
,
R.
,
2018
, “
In-Use Efficiency of Oxidation and Three-Way Catalysts Used in High Horsepower Dual Fuel and Dedicated Natural Gas Engines
,”
SAE Int. J. Engines
,
11
(
3
), pp.
383
398
. 10.4271/03-11-03-0026
17.
Piqueras
,
P.
,
García
,
A.
,
Monsalve-Serrano
,
J.
, and
Ruiz
,
M. J.
,
2019
, “
Performance of a Diesel Oxidation Catalyst Under Diesel-Gasoline Reactivity Controlled Compression Ignition Combustion Conditions
,”
Energy Convers. Manage.
,
196
, pp.
18
31
. 10.1016/j.enconman.2019.05.111
18.
García
,
A.
,
Monsalve-Serrano
,
J.
,
Villalta
,
D.
, and
Lago Sari
,
R.
,
2019
, “
Performance of a Conventional Diesel After Treatment System Used in a Medium-Duty Multi-Cylinder Dual-Mode Dual-Fuel Engine
,”
Energy Convers. Manage.
,
184
, pp.
327
337
. 10.1016/j.enconman.2019.01.069
19.
Barik
,
D.
, and
Murugan
,
S.
,
2016
, “
Effects of Diethyl Ether (DEE) Injection on Combustion Performance and Emission Characteristics of Karanja Methyl Ester (KME)–Biogas Fueled Dual-Fuel Diesel Engine
,”
Fuel
,
164
, pp.
286
296
. 10.1016/j.fuel.2015.09.094
20.
Wang
,
Y.
,
Zhao
,
Y.
, and
Yang
,
Z.
,
2013
, “
Dimethyl Ether Energy Ratio Effects in a Dimethyl Ether-Diesel Dual-Fuel Premixed Charge Compression Ignition Engine
,”
Appl. Therm. Eng.
,
54
(
2
), pp.
481
487
. 10.1016/j.applthermaleng.2013.02.005
21.
Wang
,
Y.
,
Zhao
,
Y.
,
Xiao
,
F.
, and
Li
,
D.
,
2014
, “
Combustion and Emission Characteristics of a Diesel Engine With DME as Port Premixing Fuel Under Different Injection Timing
,”
Energy Convers. Manage.
,
77
, pp.
52
60
. 10.1016/j.enconman.2013.09.011
22.
Zhao
,
Y.
,
Wang
,
Y.
,
Li
,
D.
,
Lei
,
X.
, and
Liu
,
X.
,
2014
, “
Combustion and Emission Characteristics of a DME (Dimethyl Ether)-Diesel Dual-Fuel Premixed Charge Compression Ignition Engine With EGR (Exhaust Gas Recirculation)
,”
Energy
,
72
, pp.
608
617
. 10.1016/j.energy.2014.05.086
23.
Namasivayam
,
A. M.
,
Korakianitis
,
T.
,
Crookes
,
R. J.
,
Bob-Manuel
,
K. D. H.
, and
Olsen
,
J.
,
2010
, “
Biodiesel, Emulsified Biodiesel and Dimethyl Ether as Pilot Fuels for Natural Gas Fuelled Engines
,”
Appl. Energy
,
87
(
3
), pp.
769
778
. 10.1016/j.apenergy.2009.09.014
24.
Wang
,
Y.
,
Liu
,
H.
,
Huang
,
Z.
, and
Liu
,
Z.
,
2016
, “
Study on Combustion and Emission of a Dimethyl Ether-Diesel Dual-Fuel Premixed Charge Compression Ignition Combustion Engine With LPG (Liquefied Petroleum Gas) as Ignition Inhibitor
,”
Energy
,
96
, pp.
278
285
. 10.1016/j.energy.2015.12.056
25.
Nakyai
,
T.
,
Patcharavorachot
,
Y.
,
Arpornwichanop
,
A.
, and
Saebea
,
D.
,
2020
, “
Comparative Exergoeconomic Analysis of Indirect and Direct Bio-Dimethyl Ether Syntheses Based on Air-Steam Biomass Gasification With CO2 Utilization
,”
Energy
,
209
, p.
118332
. 10.1016/j.energy.2020.118332
26.
Shikada
,
T.
,
Ohno
,
T.
,
Ogawa
,
T.
,
Ono
,
M.
,
Mizuguchi
,
M.
,
Tomura
,
K.
, and
Fujimoto
,
K.
,
1998
, “
Direct Synthesis of Dimethyl Ether From Synthesis Gas
,”
Stud. Surf. Sci. Catal.
,
119
, pp.
515
520
. https://doi.org/10.1016/S0167-2991
27.
Sorenson
,
S. C.
, and
Mikkelsen
,
S.
,
1995
,
Performance and Emissions of a 2.3 L Direct Injection Diesel Engine Fuelled With Neat Dimethyl Ether.
SAE Technical Paper No. 1995:950064.
28.
World LPG Association, Neuilly-sur-Seine, France
, “
A Global Roadmap for Autogas
,” https://www.wlpga.org/wp-content/uploads/2019/04/WLPGA-AUTOGAS-ROADMAP-March-2019-1.pdf, Accessed August 11, 2020.
29.
Mevawala
,
C.
,
Jiang
,
Y.
, and
Bhattacharyya
,
D.
,
2019
, “
Techno-Economic Optimization of Shale Gas to Dimethyl Ether Production Processes via Direct and Indirect Synthesis Routes
,”
Appl. Energy
,
238
, pp.
119
134
. 10.1016/j.apenergy.2019.01.044
30.
Ministry of Agriculture and Farmers Welfare, New Delhi, India
, “
All India Report on Agriculture Census 2010–11
,” http://agcensus.nic.in/document/ac1011/reports/air2010-11complete.pdf, Accessed August 10, 2020.
31.
DemirbaŞ
,
A.
,
1998
, “
Combustion Properties and Calculation of Higher Heating Values of Diesel Fuels
,”
Pet. Sci. Technol.
,
16
(
7–8
), pp.
785
795
. 10.1080/10916469808949811
32.
Elnajjar
,
E.
,
Selim
,
M. Y. E.
, and
Hamdan
,
M. O.
,
2013
, “
Experimental Study of Dual Fuel Engine Performance Using Variable LPG Composition and Engine Parameters
,”
Energy Convers. Manage.
,
76
, pp.
32
42
. 10.1016/j.enconman.2013.06.050
33.
Heraeus Deutschland GmbH & Co. KG, Hanau, Germany
, “
High Efficiency for a Cleaner Tomorrow
,” HeraPur® Oxidation Catalysts, https://www.heraeus.com/media/media/hch/doc_hch/brochures/201606_Brochure_Oxidation_Catalysts_Original_2012_eng.pdf, Accessed July 19, 2020.
34.
Etheridge
,
J. E.
,
Watling
,
T. C.
,
Izzard
,
A. J.
, and
Paterson
,
M. A.
,
2015
,
The Effect of Pt:Pd Ratio on Light-Duty Diesel Oxidation Catalyst Performance: An Experimental and Modelling Study.
SAE Technical Paper No. 2015-01-1053.
35.
Majewski
,
W. A.
,
2011
, “
Commercial DOC Technologies, Revision 2011.02, DieselNet Technology Guide
”.
Ecopoint Inc
,
Ontario, Canada
. https:/www.dieselnet.com/tech/cat_pm.php. Accessed October 6, 2016.
36.
Ren
,
S.
,
Wang
,
B.
,
Zhang
,
J.
,
Wang
,
Z.
, and
Wang
,
J.
,
2018
, “
Application of Dual-Fuel Combustion Over the Full Operating map in a Heavy-Duty Multi-Cylinder Engine With Reduced Compression Ratio and Diesel Oxidation Catalyst
,”
Energy Convers. Manage.
,
166
, pp.
1
12
. 10.1016/j.enconman.2018.04.011
37.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
. 10.1016/0894-1777(88)90043-X
38.
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2020
, “
Effect of Fuel Injection Pressure and Engine Speed on Performance, Emissions, Combustion, and Particulate Investigations of Gasohols Fuelled Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042201
. 10.1115/1.4044763
39.
Venkatesan
,
S. P.
, and
Kadiresh
,
P. N.
,
2019
, “
Combustion Performance Study of Aqueous Aluminum Oxide Nanofluid Blends in Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042203
. 10.1115/1.4042086
40.
Das
,
P.
,
Subbarao
,
P. M. V.
, and
Subrahmanyam
,
J. P.
,
2015
, “
Control of Combustion Process in an HCCI-DI Combustion Engine Using Dual Injection Strategy With EGR
,”
Fuel
,
159
, pp.
580
589
. 10.1016/j.fuel.2015.07.009
41.
Mack
,
J. H.
,
Aceves
,
S. M.
, and
Dibble
,
R. W.
,
2009
, “
Demonstrating Direct Use of Wet Ethanol in a Homogeneous Charge Compression Ignition (HCCI) Engine
,”
Energy
,
34
(
6
), pp.
782
787
. 10.1016/j.energy.2009.02.010
42.
Stones
,
R.
,
2012
,
Introduction to Internal Combustion Engines
, 4th ed.,
Palgrave Macmillan
,
London
.
43.
Truedsson
,
I.
,
Tuner
,
M.
,
Johansson
,
B.
, and
Cannella
,
W.
,
2012
, “
Pressure Sensitivity of HCCI Auto-Ignition Temperature for Primary Reference Fuels
,”
SAE Int. J. Engines
,
5
(
3
), pp.
1089
1108
. 10.4271/2012-01-1128
44.
Brunt
,
M. F. J.
, and
Platts
,
K. C.
,
1999
,
Calculation of Heat Release in Direct Injection Diesel Engines.
SAE Technical Paper No. 1999-01-0187.
45.
Walker
,
N. R.
,
Wissink
,
M. L.
,
DelVescovo
,
D. A.
, and
Reitz
,
R. D.
,
2015
, “
Natural Gas for High Load Dual-Fuel Reactivity Controlled Compression Ignition in Heavy-Duty Engines
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042202
.10.1115/1.4030110
46.
Hsu
,
B. D.
,
1984
,
Heat Release, Cycle Efficiency and Maximum Cylinder Pressure in Diesel Engine—The Use of an Extended Air Cycle Analysis.
SAE Technical Paper No. 1984:841054.
47.
Thurnheer
,
T.
, and
Soltic
,
P.
,
2012
, “
The Polytropic Volume Method to Detect Engine Events Based on the Measured Cylinder Pressure
,”
Control Eng. Pract.
,
20
(
3
), pp.
293
299
. 10.1016/j.conengprac.2011.11.005
48.
Königsson
,
F.
,
Kuyper
,
J.
,
Stalhammar
,
P.
, and
Angstrom
,
H.
,
2013
, “
The Influence of Crevices on Hydrocarbon Emissions From a Diesel-Methane Dual-Fuel Engine
,”
SAE Int. J. Engines
,
6
(
2
), pp.
751
765
. 10.4271/2013-01-0848
49.
Yao
,
C.
,
Cheung
,
C. S.
,
Cheng
,
C.
,
Wang
,
Y.
,
Chan
,
T. L.
, and
Lee
,
S. C.
,
2008
, “
Effect of Diesel/Methanol Compound Combustion on Diesel Engine Combustion and Emissions
,”
Energy Convers. Manage.
,
49
(
6
), pp.
1696
1704
. 10.1016/j.enconman.2007.11.007
50.
Kan
,
X.
,
Wei
,
L.
,
Li
,
X.
,
Li
,
H.
,
Zhou
,
D.
,
Yang
,
W.
, and
Wang
,
C.
,
2020
, “
Effects of the Three Dual-Fuel Strategies on Performance and Emissions of a Biodiesel Engine
,”
Appl. Energy
,
262
, p.
114542
. 10.1016/j.apenergy.2020.114542
51.
Majewski
,
W. A.
,
2018
, “
Diesel Oxidation Catalyst
,” Revision 2018.04, DieselNet Technology Guide.
Ecopoint Inc
,
Ontario, Canada
, https://dieselnet.com/tech/cat_doc.php, Accessed July 16, 2020.
You do not currently have access to this content.