Abstract

In the present work, a novel computational fluid dynamics (CFD) methodology was developed to simulate full-scale non-premixed rotating detonation engines (RDEs). A unique feature of the modeling approach was the incorporation of adaptive mesh refinement (AMR) to achieve a good trade-off between model accuracy and computational expense. Unsteady Reynolds-averaged Navier–Stokes (RANS) simulations were performed for an Air Force Research Laboratory (AFRL) non-premixed RDE configuration with hydrogen as fuel and air as the oxidizer. The finite-rate chemistry model, along with a ten-species detailed kinetic mechanism, was employed to describe the H2-Air combustion chemistry. Three distinct operating conditions were simulated, corresponding to the same global equivalence ratio of unity but different fuel/air mass flowrates. For all conditions, the capability of the model to capture essential detonation wave dynamics was assessed. An exhaustive verification and validation study was performed against experimental data in terms of a number of waves, wave frequency, wave height, reactant fill height, oblique shock angle, axial pressure distribution in the channel, and fuel/air plenum pressure. The CFD model was demonstrated to accurately predict the sensitivity of these wave characteristics to the operating conditions, both qualitatively and quantitatively. A comprehensive heat release analysis was also conducted to quantify detonative versus deflagrative burning for the three simulated cases. The present CFD model offers a potential capability to perform rapid design space exploration and/or performance optimization studies for realistic full-scale RDE configurations.

References

1.
Wolanski
,
P.
,
2013
, “
Detonative Propulsion
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
125
158
.
2.
Tang
,
X.-M.
,
Wang
,
J. P.
, and
Shao
,
Y.-T.
,
2015
, “
Three-Dimensional Numerical Investigations of the Rotating Detonation Engine With the Hollow Combustor
,”
Combust. Flame
,
162
(
4
), pp.
997
1008
.
3.
Kailasanath
,
K.
,
2011
, “
The Rotating-Detonation-Wave Engine Concept: A Brief Status Report
,”
AIAA SciTech Forum and Exposition
,
Orlando, FL
,
Jan. 4–7
, AIAA Paper 6.2011-580.
4.
Bykovskii
,
F. A.
,
Zhdan
,
S. A.
, and
Vedernikov
,
E. F.
,
2006
, “
Continuous Spin Detonations
,”
J. Propul. Power
,
22
(
6
), pp.
1204
1216
.
5.
Rankin
,
B. A.
,
Fotia
,
M. L.
,
Paxson
,
D. E.
,
Hoke
,
J. L.
, and
Schauer
,
F. R.
,
2015
, “
Experimental and Numerical Evaluation of Pressure Gain Combustion in a Rotating Detonation Engine
,”
AIAA SciTech Forum and Exposition
,
Kissimmee, FL
,
Jan. 5–7
, AIAA Paper 2015-0877.
6.
Rankin
,
B.
,
Richardson
,
D. R.
,
Caswell
,
A. W.
,
Naples
,
A. G.
,
Hoke
,
J. L.
, and
Schauer
,
F. R.
,
2017
, “
Chemiluminescence Imaging of an Optically Accessible Non-Premixed Rotating Detonation Engine
,”
Combust. Flame
,
176
, pp.
12
22
.
7.
Tobias
,
J.
,
Deppershmidt
,
D.
,
Welch
,
C.
,
Miller
,
R.
,
Uddi
,
M.
, and
Agrawal
,
A. J.
,
2019
, “
OH* Chemiluminescence of the Combustion Products From a Methane-Fueled Rotating Detonation Engine
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021021
.
8.
Goldenstein
,
C. S.
,
Almodovar
,
C. A.
,
Jeffries
,
J. B.
,
Hanson
,
R. K.
, and
Brophy
,
C. M.
,
2014
, “
High-Bandwidth Scanned-Wavelength-Modulation Spectroscopy Sensors for Temperature and H2O in a Rotating Detonation Engine
,”
Meas. Sci. Technol.
,
25
(
10
), p.
105104
.
9.
Rankin
,
B. A.
,
Codoni
,
J. R.
,
Cho
,
K. Y.
,
Hoke
,
J. L.
, and
Schauer
,
F. R.
,
2019
, “
Investigations of the Structure of Detonation Waves in a Non-Premixed Hydrogen-air Rotating Detonation Engine Using Mid-Infrared Imaging
,”
Proc. Combust. Inst.
,
37
(
3
), pp.
3479
3486
.
10.
Fugger
,
C. A.
,
Cho
,
K. Y.
,
Hoke
,
J. L.
,
Gomez
,
M. G.
,
Meyer
,
T.
,
Schumaker
,
S. A.
, and
Caswell
,
A. W.
,
2020
, “
Detonation Dynamics Visualization From Megahertz Imaging
,”
AIAA SciTech Forum and Exhibition
,
Orlando, FL
,
Jan. 6–10
, AIAA Paper 2020-0441.
11.
Zhdan
,
S. A.
,
Bykovskii
,
F. A.
, and
Vedernikov
,
E. F.
,
2007
, “
Mathematical Modeling of a Rotating Detonation Wave in a Hydrogen-Oxygen Mixture
,”
Combust. Explos. Shock Waves
,
43
(
4
), pp.
449
459
.
12.
Hishida
,
M.
,
Fujiwara
,
T.
, and
Wolanski
,
P.
,
2009
, “
Fundamentals of Rotating Detonation Engines
,”
Shock Waves
,
19
(
1
), pp.
1
10
.
13.
Schwer
,
D. A.
, and
Kailasanath
,
K.
,
2010
, “
Numerical Investigation of Rotating Detonation Engines
,”
AIAA Joint Propulsion Conference and Exhibit
,
Nashville, TN
,
July 25–28
, AIAA Paper 2010-6880.
14.
Schwer
,
D. A.
, and
Kailasanath
,
K.
,
2011
, “
Numerical Investigation of the Physics of Rotating-Detonation-Engines
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2195
2202
.
15.
Schwer
,
D. A.
, and
Kailasanath
,
K.
,
2013
, “
Fluid Dynamics of Rotating Detonation Engines With Hydrogen and Hydrocarbon Fuels
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
1991
1998
.
16.
Yi
,
T.-H.
,
Turangan
,
C.
,
Lou
,
J.
,
Wolanski
,
P.
, and
Kindracki
,
J.
,
2009
, “
A Three-Dimensional Numerical Study of Rotational Detonation in an Annular Chamber
,”
AIAA SciTech Propulsion and Exhibition
,
Orlando, FL
,
Jan. 5–8
, AIAA Paper 2009-634.
17.
Frolov
,
S. M.
,
Durovskii
,
A. V.
, and
Ivanov
,
V. S.
,
2013
, “
Three Dimensional Numerical Simulation of Operation Process in Rotating Detonation Engine
,”
Prog. Propul. Phys.
,
4
, pp.
476
488
.
18.
Li
,
C.
,
Kailasanath
,
K.
, and
Oran
,
E. S.
,
1994
, “
Detonation Structure Behind Oblique Shocks
,”
Phys. Fluids
,
6
(
4
), pp.
1600
1611
.
19.
Schwer
,
D.
, and
Kailasanath
,
K.
,
2011
, “
Effect of Inlet on Fill Region and Performance of Rotating Detonation Engines
,”
AIAA Joint Propulsion Conference and Exhibit
,
San Diego, CA
.
20.
Schwer
,
D.
, and
Kailasanath
,
K.
,
2011
, “
Numerical Study of the Effects of Engine Size on Rotating Detonation Engines
,”
AIAA SciTech Forum and Exhibition
,
Orlando, FL
,
Jan. 4–7
, AIAA Paper 2011-581.
21.
Nordeen
,
C. A.
,
Schwer
,
D.
, and
Corrigan
,
A.
,
2014
, “
Area Effects on Rotating Detonation Engine Performance
,”
AIAA Propulsion and Energy Forum
,
Cleveland, OH
, AIAA Paper 2014-3900.
22.
Paxson
,
D. E.
,
2014
, “
Numerical Analysis of a Rotating Detonation Engine in the Relative Reference Frame
,”
AIAA SciTech Forum
,
National Harbor, MD
.
23.
Paxson
,
D. E.
, and
Naples
,
A.
,
2017
, “
Numerical and Analytical Assessment of a Coupled Rotating Detonation Engine and Turbine Experiment
,”
AIAA SciTech Forum
,
Grapevine, TX
.
24.
Paxson
,
D. E.
,
2018
, “
Examination of Wave Speed in Rotating Detonation Engines Using Simplified Computational Fluid Dynamics
,”
AIAA SciTech Forum and Exhibition
,
Kissimmee, FL
, AIAA Paper 2018-1883.
25.
Anand
,
V.
, and
Gutmark
,
E.
,
2019
, “
Rotating Detonation Combustors and Their Similarities to Rocket Instabilities
,”
Prog. Energy Combust. Sci.
,
73
, pp.
182
234
.
26.
Schwer
,
D. A.
, and
Kailasanath
,
K.
,
2015
, “
Physics of Heat-Release in Rotating Detonation Engines
,”
AIAA SciTech Forum and Exhibition
,
Kissimmee, FL
, AIAA Paper 2015-1602.
27.
Strakey
,
P. A.
,
Ferguson
,
D. H.
,
Sisler
,
A. T.
, and
Nix
,
A. C.
,
2016
, “
Computationally Quantifying Loss Mechanisms in a Rotating Detonation Engine
,”
AIAA SciTech Forum
,
San Diego, CA
, AIAA Paper 2016-0900.
28.
Cocks
,
P. A.
,
Holley
,
A. T.
, and
Rankin
,
B. A.
,
2016
, “
High Fidelity Simulations of a Non-Premixed Rotating Detonation Engine
,”
AIAA SciTech Forum
,
San Diego, CA
, AIAA Paper 2016-0125.
29.
Shur
,
M. L.
,
Spalart
,
R. P.
,
Strelets
,
A. K.
, and
Travin
,
A. K.
,
2008
, “
A Hybrid RANS-LES Approach With Delayed-DES and Wall-Modelled LES Capabilities
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1638
1649
.
30.
O’ Conaire
,
M.
,
Curran
,
H.
,
Simmie
,
J. M.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2004
, “
A Comprehensive Modeling Study of Hydrogen Oxidation
,”
Int. J. Chem. Kinet.
,
36
(
11
), pp.
603
622
.
31.
Yellapantula
,
S.
,
Tangirala
,
V.
,
Singh
,
K.
, and
Haynes
,
J.
,
2017
, “
A Numerical Study of H2/air Rotating Detonation Combustor
,”
26th International Colloquium on the Dynamics of Explosion and Reactive Systems
.
32.
Sato
,
T.
, and
Raman
,
V.
,
2019
, “
Detonation Structure in Ethylene/Air Based Rotating Detonation Engine
,”
AIAA J. Prop. Power
,
36
(
5
).
33.
Lietz
,
C.
,
Ross
,
M.
,
Desai
,
Y.
, and
Hargus
,
W.
, Jr.
,
2020
, “
Numerical Investigation of Operational Performance in a Methane-Oxygen Rotating Detonation Rocket Engine
,”
AIAA SciTech 2020 Forum
,
Orlando, FL
, AIAA Paper 2020-0687.
34.
Convergent Science
,
2018
,
CONVERGE 2.4 Theory Manual
,
Convergent Science Inc.
,
Middleton, WI
.
35.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
, 2nd ed.,
DCW Industries Inc.
36.
Amsden
,
A. A.
,
1997
, “
A Block Structured KIVA Program for Engines with Vertical and Canted Valves
”,
Los Alamos National Laboratory Technical Report
, LA-13313-MS.
37.
Rhie
,
C. M.
, and
Chow
,
W. L.
,
1983
, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
(
11
), pp.
1525
1532
.
38.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.
39.
Kumar
,
G.
, and
Drennan
,
S.
,
2016
, “
A CFD Investigation of Multiple Burner Ignition and Flame Propagation with Detailed Chemistry and Automatic Meshing
,”
52nd AIAA/SAE/ASEE Joint Propulsion Conference, Propulsion and Energy Forum, AIAA 2016-4561
,
Salt Lake City, UT
,
July 25–27
.
40.
Pal
,
P.
,
2016
, “
Computational Modeling and Analysis of low Temperature Combustion Regimes for Advanced Engine Applications
,”
Ph.D. dissertation
,
University of Michigan-Ann Arbor
.
41.
Pal
,
P.
,
Keum
,
S.
, and
Im
,
H. G.
,
2016
, “
Assessment of Flamelet Versus Multi-Zone Combustion Modeling Approaches for Stratified-Charge Compression Ignition Engines
,”
Int. J. Engine Res.
,
17
(
3
), pp.
280
290
.
42.
Keum
,
S.
,
Pal
,
P.
,
Im
,
H. G.
,
Babajimopoulos
,
A.
, and
Assanis
,
D. N.
,
2016
, “
Effects of Fuel Injection Parameters on the Performance of Homogeneous Charge Compression Ignition at low-Load Conditions
,”
Int. J. Engine Res.
,
17
(
4
), pp.
413
420
.
43.
Pal
,
P.
,
Wu
,
Y.
,
Lu
,
T.
,
Som
,
S.
,
See
,
Y. C.
, and
Le Moine
,
A.
,
2018
, “
Multidimensional Numerical Simulations of Knocking Combustion in a Cooperative Fuel Research Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102205
.
44.
Katta
,
V. R.
,
Cho
,
K. Y.
,
Hoke
,
J. L.
,
Codoni
,
J. R.
,
Schauer
,
F. R.
, and
Roquemore
,
W. M.
,
2019
, “
Effect of Increasing Channel Width on the Structure of Rotating Detonation Wave
,”
Proc. Combust. Inst.
,
37
(
3
), pp.
3575
3583
.
45.
Pal
,
P.
,
Xu
,
C.
,
Kumar
,
G.
,
Drennan
,
S.
,
Rankin
,
B. A.
, and
Som
,
S.
,
2020
, “
Large-Eddy Simulation and Chemical Explosive Mode Analysis of Non-Ideal Combustion in a Non-Premixed Rotating Detonation Engine
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
, AIAA Paper 2020-2161.
46.
Pal
,
P.
,
Xu
,
C.
,
Kumar
,
G.
,
Drennan
,
S.
,
Rankin
,
B. A.
, and
Som
,
S.
, “
Large-Eddy Simulations and Mode Analysis of Ethylene/Air Combustion in a Non-Premixed Rotating Detonation Engine
,”
AIAA Propulsion and Energy 2020 Forum
,
VIRTUAL EVENT
,
Aug. 24–28
, AIAA Paper 2020-3876.
You do not currently have access to this content.