Abstract

The flowback behavior of hydraulic fractured horizontal well in shale gas reservoir is relatively different from that of conventional reservoirs. Therefore, it is necessary to investigate the relationship between the potential influencing factors and the flowback behavior in shale gas reservoirs. This study is based on experimental observations and numerical simulations. In the experiments, the flowback process was simulated through a gas displacement experiment, and the cores were scanned simultaneously to obtain the water distribution. Then, the water migration and retention mechanisms were investigated to determine the flowback behavior. For the numerical simulations, a multi-porosity model was established. The mathematical model accounted for the capillary pressure term. By matching the fluid saturation-front curves of the experimental and simulation results, a fitted capillary pressure curve, which reflects the multiple mechanisms controlling flowback, was obtained. Based on the established model and fitted capillary pressure, the flowback behavior and relevant influencing factors of the shale gas were investigated. The results show that the flowback ratio is inversely proportional to the clay content of the shale. A high salinity fracturing fluid or a surfactant solution can increase the flowback ratio. In addition, the injection pressure is proportional to the flowback ratio, while the matrix permeability and the flowback ratio have an inverse relationship. The adsorption–desorption process of gas has no significant effect on the flowback ratio. This study aims to provide a new method for analyzing the flowback performance of shale gas using a combination of experimental and numerical simulation methods.

References

1.
Ahmed
,
U.
,
2015
, “
Optimized Shale Resource Development: Transforming Unconventional to Conventional Technologies
,”
Proceedings of the Offshore Mediterranean Conference and Exhibition
,
Ravenna, Italy
,
Mar. 25–27
, Paper No. OMC-2015-221.
2.
Guo
,
T. K.
,
Zhang
,
S. C.
,
Qu
,
Z. Q.
,
Zhou
,
T.
,
Xiao
,
Y. S.
, and
Gao
,
J.
,
2014
, “
Experimental Study on Hydraulic Fracturing for Shale by Stimulated Reservoir Volume
,”
Fuel
,
128
, pp.
373
380
. 10.1016/j.fuel.2014.03.029
3.
Wang
,
Y.
,
Holditch
,
S.
, and
Mcvay
,
D.
,
2008
, “
Simulation of Gel Damage on Fracture-Fluid Cleanup and Long-Term Recovery in Tight-Gas Reservoirs
,”
J. Nat. Gas. Sci. Eng.
,
9
(
6
), pp.
108
118
. 10.2118/117444-ms
4.
Cipolla
,
C.
,
Lolon
,
E.
,
Erdle
,
J.
, and
Tathed
,
V.
, “
Modeling Well Performance in Shale-Gas Reservoirs
,”
Proceedings of SPE/EAGE Reservoirs Characterization and Simulation Conference
,
Abu Dhabi
, Oct.
19–21
, SPE-125532-MS.
5.
Thompson
,
J.
,
Fan
,
L.
,
Grant
,
D.
,
Martin
,
R.
,
Kanneganti
,
K.
, and
Lindsay
,
G.
, “
An Overview of Horizontal Well Completions in the Haynesville Shale
,”
Proceedings of Canadian Unconventional Resources & International Petroleum Conference
,
Calgary, Alberta
,
Oct. 19–21
, SPE-136875-MS.
6.
Vengosh
,
A.
,
Jackson
,
R.
,
Warner
,
N.
,
Darrah
,
T.
, and
Kondash
,
A.
,
2014
, “
A Critical Review of the Risks to Water Resources From Unconventional Shale gas Development and Hydraulic Fracturing in the United States
,”
Environ. Sci. Technol.
,
48
(
15
), pp.
8334
8348
. 10.1021/es405118y
7.
Singh
,
H.
,
2016
, “
A Critical Review of Water Uptake by Shales
,”
J. Nat. Gas. Sci. Eng.
,
34
, pp.
751
766
. 10.1016/j.jngse.2016.07.003
8.
Makhanov
,
K.
,
Habibi
,
A.
,
Dehghanpour
,
H.
, and
Kuru
,
E.
,
2014
, “
Liquid Uptake of Gas Shales: A Workflow to Estimate Water Loss During Shut-in Periods After Fracturing Operations
,”
J. Unconv. Oil Gas Resour.
,
7
, pp.
22
32
. 10.1016/j.juogr.2014.04.001
9.
Parekh
,
B.
, and
Sharma
,
M.
, “
Cleanup of Water Blocks in Depleted Low-Permeability Reservoirs
,”
Proceedings of SPE Annual Technical Conference and Exhibition
,
Houston, TX
, Paper SPE 89837.
10.
Le
,
D.
,
Hoang
,
H.
, and
Mahadevan
,
J.
, “
Impact of Capillary Suction on Fracture Face Skin Evolution in Water Blocked Wells
,”
Proceedings of SPE Hydraulic Fracturing Technology Conference
,
Woodlands, TX
, Paper SPE 119585.
11.
Elgmati
,
M.
,
Zhang
,
H.
,
Bai
,
B.
,
Flori
,
R.
, and
Qu
,
Q.
, “
Submicron-Pore Characterization of Shale Gas Plays
,”
Proceedings of SPE North American Unconventional Gas Conference and Exhibition
,
The Woodlands, TX
,
2011
, Paper SPE 144050.
12.
Bazin
,
B.
,
Peysson
,
Y.
,
Lamy
,
F.
,
Martin
,
F.
,
Aubry
,
E.
, and
Chapuis
,
C.
,
2010
, “
In-situ Water-Blocking Measurements and Interpretation Related to Fracturing Operations in Tight Gas Reservoirs
,”
SPE Prod. Oper.
,
25
(
4
), pp.
431
437
. 10.2118/121812-pa
13.
Dutta
,
R.
,
Lee
,
C.
,
Odumabo
,
S.
, and
Ye
,
P.
,
2014
, “
Experimental Investigation of Fracturing-Fluid Migration Caused by Spontaneous Imbibition in Fractured Low-Permeability Sands
,”
SPE Reservoir Eval. Eng.
,
17
(
1
), pp.
74
81
. 10.2118/154939-PA
14.
Bohacs
,
K.
,
Passey
,
Q.
,
Rudnicki
,
M.
,
Esch
,
W.
, and
Lazar
,
O.
, “
The Spectrum of Fine-Grained Reservoirs From
,”
Proceedings of International Petroleum Technology Conference
,
Beijing, China
,
2013
, Paper SPE 16676.
15.
Haluszczak
,
L. O.
,
Rose
,
A. W.
, and
Kump
,
L. R.
,
2013
, “
Geochemical Evaluation of Flowback Brine From Marcellus Gas Wells in Pennsylvania, USA
,”
Appl. Geochem.
,
28
, pp.
55
61
. 10.1016/j.apgeochem.2012.10.002
16.
Fang
,
C.
,
Huang
,
Z.
,
Wang
,
Q.
,
Zheng
,
D.
, and
Liu
,
H.
,
2014
, “
Cause and Significance of the Ultra-low Water Saturation in Gas-Enriched Shale Reservoir
,”
Nat. Gas Geosci.
,
25
(
3
), pp.
471
476
.
17.
Wang
,
F.
,
Pan
,
Z.
, and
Zhang
,
S.
,
2016
, “
Modeling Fracturing-Fluid Flowback Behavior in Hydraulically Fractured Shale gas Under Chemical Potential Dominated Conditions
,”
Appl. Geochem.
,
74
, pp.
194
202
. 10.1016/j.apgeochem.2016.10.008
18.
Wang
,
F.
,
Pan
,
Z.
, and
Zhang
,
S.
,
2017
, “
Impact of Chemical Osmosis on Water Leakoff and Flowback Behavior From Hydraulically Fractured Gas Shale
,”
J. Pet. Sci. Eng.
,
151
, pp.
264
274
. 10.1016/j.petrol.2017.01.018
19.
Fan
,
L.
,
Thompson
,
J.
, and
Robinson
,
J.
,
2010
, “
Understanding Gas Production Mechanism and Effectiveness of Well Stimulation in the Haynesville Shale Through Reservoir Simulation
,”
Proceedings of Canadian Unconventional Resources & International Petroleum Conference
,
Calgary, Alberta
, Paper SPE 136696.
20.
Sharma
,
M.
, and
Agrawal
,
S.
,
2013
, “
Impact of Liquid Loading in Hydraulic Fractures on Well Productivity
,”
Proceedings of the SPE Hydraulic Fracturing Technology Conference
,
Woodlands, TX
, Paper SPE 163837.
21.
Yang
,
R.
,
Huang
,
Z.
,
Li
,
G.
,
Yu
,
W.
,
Kamy
,
S.
,
Tian
,
S.
,
Song
,
X.
, and
Sheng
,
M.
, “
An Innovative Approach to Model Two-Phase Flowback of Shale Wells With Complex Fracture Networks
,” Proceedings of
SPE Annual Technical Conference and Exhibition
,
Dubai
, Sept.
26–28, 2016
, SPE-181766-MS.
22.
Xu
,
Y.
,
Adefidipe
,
O.
, and
Dehghanpour
,
H.
,
2015
, “
Estimating Fracture Volume Using Flowback Data From the Horn River Basin: A Material Balance Approach
,”
J. Nat. Gas. Sci. Eng.
,
25
, pp.
253
270
. 10.1016/j.jngse.2015.04.036
23.
Agrawal
,
S.
, and
Sharma
,
M.
,
2015
, “
Practical Insights Into Liquid Loading Within Hydraulic Fractures and Potential Unconventional gas Reservoir Optimization Strategies
,”
J. Unconv. Oil Gas Resour.
,
11
, pp.
60
74
. 10.1016/j.juogr.2015.04.001
24.
Cheng
,
Y.
, “
Impact of Water Dynamics in Fractures on the Performance of Hydraulically Fractured Wells in Gas-Shale Reservoirs
,”
J. Can. Petro. Technol.
,
51
(
2
), pp.
143
151
. 10.2118/127863-PA
25.
Fakcharoenphol
,
P.
,
Torcuk
,
M.
,
Bertoncello
,
A.
,
Kazemi
,
H.
,
Wu
,
Y.
,
Wallace
,
J.
, and
Honarpour
,
M.
,
2013
, “
Managing Shut-in Time to Enhance gas Flow Rate in Hydraulic Fractured Shale Reservoirs: A Simulation Study
,”
Proceedings of SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Sept. 30–Oct. 2
, Paper SPE 166098.
26.
Fakcharoenphol
,
P.
,
Torcuk
,
M.
,
Kazemi
,
H.
, and
Wu
,
Y.
,
2016
, “
Effect of Shut-in Time on Gas Flow Rate in Hydraulic Fractured Shale Reservoirs
,”
J. Nat. Gas. Sci. Eng.
,
32
, pp.
109
121
. 10.1016/j.jngse.2016.03.068
27.
Li
,
C.
,
Lafollette
,
R.
,
Sookprasong
,
A.
, and
Wang
,
S.
,
2013
, “
Characterization of Hydraulic Fracture Geometry in Shale Gas Reservoirs Using Early Production Data
,”
Proceedings of SPE International Petroleum Technology Conference
,
Beijing, China
,
Mar. 26–28
, SPE-16896-MS.
28.
Shen
,
W.
, and
Xu
,
Y.
,
2016
, “
Numerical Simulation of Gas and Water Flow Mechanism in Hydraulically Fractured Shale Gas Reservoirs
,”
J. Nat. Gas. Sci. Eng.
,
35
, pp.
726
735
. 10.1016/j.jngse.2016.08.078
29.
Zhou
,
Q.
,
Dilmore
,
R.
,
Kleit
,
A.
, and
Wang
,
J.
,
2016
, “
Evaluating Fracture-Fluid Flowback in Marcellus Using Data-Mining Technologies
,”
SPE Production & Operation
,
31
(
2
), pp.
133
146
. 10.2118/173364-PA
30.
Parmar
,
J.
,
Dehghanpour
,
H.
, and
Kuru
,
E.
,
2012
, “
Unstable Displacement: A Missing Factor in Fracturing Fluid Recovery
,”
Proceedings of SPE Canadian Unconventional Resources Conference
,
Calgary
, Paper SPE 162649.
31.
Parmar
,
J.
,
Kuru
,
E.
, and
Dehghanpour
,
H.
,
2013
, “
Drainage Against Gravity: Factors Impacting the Load Recovery in Fractures
,”
Proceedings of SPE Unconventional Resources Conference
,
The Woodlands, TX
, Paper SPE 164530.
32.
Barbot
,
E.
,
Vidic
,
N.
,
Gregory
,
K.
, and
Vidic
,
R.
,
2013
, “
Spatial and Temporal Correlation of Water Quality Parameters of Produced Waters From Devonian-Age Shale Following Hydraulic Fracturing
,”
Environ. Sci. Technol.
,
47
(
6
), pp.
2562
2569
. 10.1021/es304638h
33.
Lin
,
H.
,
Zhang
,
S.
,
Wang
,
F.
,
Pan
,
Z.
,
Mou
,
J.
,
Zhou
,
T.
, and
Ren
,
Z.
,
2016
, “
Experimental Investigation on Imbibition-Front Progression in Shale Based on Nuclear Magnetic Resonance
,”
Energy & Fuels
,
30
(
11
), pp.
9097
9105
. 10.1021/acs.energyfuels.6b01739
34.
Blauch
,
M.
,
Myers
,
R.
,
Moore
,
T.
,
Lipinski
,
B.
, and
Houston
,
N.
,
2009
, “
Marcellus Shale Post-Frac Flowback Waters - Where is All the Salt Coming from and What are the Implications?
SPE Eastern Regional Meeting
,
Charleston, West Virginia
, September 2009, Paper No. SPE-125740-MS.
35.
Capo
,
R.
,
Stewart
,
B.
,
Rowan
,
E.
,
Kohl
,
C.
,
Wall
,
A.
,
Chapman
,
E.
,
Hammack
,
R.
, and
Schroeder
,
K.
,
2014
, “
The Strontium Isotopic Evolution of Marcellus Formation Produced Waters, Southwestern Pennsylvania
,”
Int. J. Coal Geol.
,
126
, pp.
57
63
. 10.1016/j.coal.2013.12.010
36.
Ambrose
,
R.
,
Hartman
,
R.
,
Diaz-Campos
,
M.
,
Akkutlu
,
I.
, and
Sondergeld
,
C.
,
2012
, “
Shale Gas-in-Place Calculations Part I: New Pore-Scale Considerations
,”
SPE J.
,
17
(
1
), pp.
219
229
. 10.2118/131772-PA
You do not currently have access to this content.