Abstract

Savonius turbines are one of the old and cost-effective turbines which extract the wind energy by the drag force. Nowadays, they use in urban areas to generate electricity due to their simple structure, ease of maintenance, and acceptable power output under a low wind speed. However, their efficiency is low and the improvement of their performance is necessary to increase the total power output. This paper compares four various blade profiles in a two-blade conventional Savonius wind turbine. The ratios of blade diameter to the blade depth of s/d = 0.3, 0.5, 0.7, and 1 are tested under different free-wind speeds of 3, 5, and 7 m/s and tip speed ratios (TSRs) in the range from 0.2 to 1.2. It is found that the profile of blades in a Savonius rotor plays a considerable role in power characteristics. Also, regardless of blades profile and free-wind speed, the maximum power coefficient develops in TSR = 0.8. In addition, increasing the free-wind speed enhances the rotor performance of all cases under consideration. Finally, it is revealed that the rotor with s/d = 0.5 provides maximum power coefficients in all free-wind speeds and TSR values among the rotors under consideration, whereas the rotor with s/d = 1 is the worth cases.

References

1.
Renewables 2019, Global Status Report
, 14th ed., 2019.
2.
Tummala
,
A.
,
Velamati
,
R. K.
,
Sinha
,
D. K.
,
Indraja
,
V.
, and
Krishna
,
V. H.
,
2016
, “
A Review on Small Scale Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
56
, pp.
1351
1371
. 10.1016/j.rser.2015.12.027
3.
Kammen
,
D. M.
, and
Sunter
,
D. A.
,
2016
, “
City-Integrated Renewable Energy for Urban Sustainability
,”
Science
,
352
(
6288
), pp.
922
928
. 10.1126/science.aad9302
4.
Masdari
,
M.
,
Tahani
,
M.
,
Naderi
,
M. H.
, and
Babayan
,
N.
,
2019
, “
Optimization of Airfoil Based Savonius Wind Turbine Using Coupled Discrete Vortex Method and Salp Swarm Algorithm
,”
J. Cleaner Prod.
,
222
, pp.
47
56
. 10.1016/j.jclepro.2019.02.237
5.
Kerikous
,
E.
, and
Thévenin
,
D.
,
2019
, “
Optimal Shape of Thick Blades for a Hydraulic Savonius Turbine
,”
Energy
,
189
, p.
116157
. 10.1016/j.energy.2019.116157
6.
Zhang
,
Y.
,
Kang
,
C.
,
Ji
,
Y.
, and
Li
,
Q.
,
2019
, “
Experimental and Numerical Investigation of Flow Patterns and Performance of a Modified Savonius Hydrokinetic Rotor
,”
Renewable Energy
,
141
, pp.
1067
1079
. 10.1016/j.renene.2019.04.071
7.
Saeed
,
H. A. H.
,
Elmekawy
,
A. M. N.
, and
Kassab
,
S. Z.
,
2019
, “
Numerical Study of Improving Savonius Turbine Power Coefficient by Various Blade Shapes
,”
Alexandria Eng. J.
,
58
(
2
), pp.
429
441
. 10.1016/j.aej.2019.03.005
8.
Basumatary
,
M.
,
Biswas
,
A.
, and
Misra
,
R. D.
,
2018
, “
CFD Analysis of an Innovative Combined Lift and Drag (CLD) Based Modified Savonius Water Turbine
,”
Energy Convers. Manage.
,
174
, pp.
72
87
. 10.1016/j.enconman.2018.08.025
9.
Chan
,
C. M.
,
Bai
,
H. L.
, and
He
,
D. Q.
,
2018
, “
Blade Shape Optimization of the Savonius Wind Turbine Using a Genetic Algorithm
,”
Appl. Energy
,
213
, pp.
148
157
. 10.1016/j.apenergy.2018.01.029
10.
He
,
D. Q.
,
Bai
,
H. L.
,
Chan
,
C. M.
, and
Li
,
K. M.
,
2019
, “
Performance-Based Optimizations on Savonius-Type Vertical-Axis Wind Turbines Using Genetic Algorithm
,”
Energy Procedia
,
158
, pp.
643
648
. 10.1016/j.egypro.2019.01.175
11.
Altan
,
B. D.
,
Altan
,
G.
, and
Kovan
,
V.
,
2016
, “
Investigation of 3D Printed Savonius Rotor Performance
,”
Renewable Energy
,
99
, pp.
584
591
. 10.1016/j.renene.2016.07.043
12.
Sharma
,
S.
, and
Sharma
,
R. K.
,
2016
, “
Performance Improvement of Savonius Rotor Using Multiple Quarter Blades-A CFD Investigation
,”
Energy Convers. Manage.
,
127
, pp.
43
54
. 10.1016/j.enconman.2016.08.087
13.
Hassanzadeh
,
R.
, and
Mohammadnejad
,
M.
,
2019
, “
Effects of Inward and Outward Overlap Ratios on the Two-Blade Savonius Type of Vertical Axis Wind Turbine Performance
,”
Int. J. Green Energy
,
16
(
15
), pp.
1485
1496
. 10.1080/15435075.2019.1671420
14.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Influence of Blade Profiles on Savonius Rotor Performance: Numerical Simulation and Experimental Validation
,”
Energy Convers. Manage.
,
186
, pp.
267
277
. 10.1016/j.enconman.2019.02.058
15.
Tian
,
W.
,
Song
,
B.
, and
Mao
,
Z.
,
2020
, “
Numerical Investigation of Wind Turbines and Turbine Arrays on Highways
,”
Renewable Energy
,
147
, pp.
384
398
. 10.1016/j.renene.2019.08.123
16.
Al-Ghriybah
,
M.
,
Zulkafli
,
M. F.
,
Didane
,
D. H.
, and
Mohd
,
S.
,
2019
, “
The Effect of Inner Blade Position on the Performance of the Savonius Rotor
,”
Sustain. Energy Technol. Assess.
,
36
, p.
100534
. 10.1016/j.seta.2019.100534
17.
Grönman
,
A.
,
Tiainen
,
J.
, and
Jaatinen-Värri
,
A.
,
2019
, “
Experimental and Analytical Analysis of Vaned Savonius Turbine Performance Under Different Operating Conditions
,”
Appl. Energy
,
250
, pp.
864
872
. 10.1016/j.apenergy.2019.05.105
18.
Mosbahi
,
M.
,
Ayadi
,
A.
,
Chouaibi
,
Y.
,
Driss
,
Z.
, and
Tucciarelli
,
T.
,
2019
, “
Performance Study of a Helical Savonius Hydrokinetic Turbine With a New Deflector System Design
,”
Energy Convers. Manage.
,
194
, pp.
55
74
. 10.1016/j.enconman.2019.04.080
19.
Antar
,
E.
, and
Elkhoury
,
M.
,
2019
, “
Parametric Sizing Optimization Process of a Casing for a Savonius Vertical Axis Wind Turbine
,”
Renewable Energy
,
136
, pp.
127
138
. 10.1016/j.renene.2018.12.092
20.
Storti
,
B. A.
,
Dorella
,
J. J.
,
Roman
,
N. D.
,
Peralta
,
I.
,
Alejandro
,
E.
, and
Albanesi
,
A. E.
,
2019
, “
Improving the Efficiency of a Savonius Wind Turbine by Designing a Set of Deflector Plates With a Metamodel-Based Optimization Approach
,”
Energy
,
186
, p.
115814
. 10.1016/j.energy.2019.07.144
21.
Montelpare
,
S.
,
D’ Alessandro
,
V.
,
Zoppi
,
A.
, and
Ricci
,
R.
,
2018
, “
Experimental Study on a Modified Savonius Wind Rotor for Street Lighting Systems. Analysis of External Appendages and Elements
,”
Energy
,
144
, pp.
146
158
. 10.1016/j.energy.2017.12.017
22.
Mauro
,
S.
,
Brusca
,
S.
,
Lanzafame
,
R.
, and
Messina
,
M.
,
2019
, “
CFD Modeling of a Ducted Savonius Wind Turbine for the Evaluation of the Blockage Effects on Rotor Performance
,”
Renewable Energy
,
141
, pp.
28
39
. 10.1016/j.renene.2019.03.125
23.
Bai
,
H. L.
,
Chan
,
C. M.
,
Zhu
,
X. M.
, and
Li
,
K. M.
,
2019
, “
A Numerical Study on the Performance of a Savonius-Type Vertical-Axis Wind Turbine in a Confined Long Channel
,”
Renewable Energy
,
139
, pp.
102
109
. 10.1016/j.renene.2019.02.044
24.
Thakur
,
N.
,
Biswas
,
A.
,
Kumar
,
Y.
, and
Basumatary
,
M.
,
2019
, “
CFD Analysis of Performance Improvement of the Savonius Water Turbine by Using an Impinging jet Duct Design
,”
Chin. J. Chem. Eng.
,
27
(
4
), pp.
794
801
. 10.1016/j.cjche.2018.11.014
25.
Bai
,
H.
, and
Chan
,
C. M.
,
2019
, “
Positive Interactions of Two Savonius-Type Vertical-Axis Wind Turbines for Performance Improvement
,”
Energy Procedia
,
158
, pp.
625
630
. 10.1016/j.egypro.2019.01.165
26.
Mereu
,
R.
,
Federici
,
D.
,
Ferrari
,
G.
,
Schito
,
P.
, and
Inzoli
,
F.
,
2017
, “
Parametric Numerical Study of Savonius Wind Turbine Interaction in a Linear Array
,”
Renewable Energy
,
113
, pp.
1320
1332
. 10.1016/j.renene.2017.06.094
27.
Bethi
,
R. V.
,
Laws
,
P.
,
Kumar
,
P.
, and
Mitra
,
S.
,
2019
, “
Modified Savonius Wind Turbine for Harvesting Wind Energy From Trains Moving in Tunnels
,”
Renewable Energy
,
135
, pp.
1056
1063
. 10.1016/j.renene.2018.12.010
28.
Patel
,
V.
,
Eldho
,
T. I.
, and
Prabhu S
,
V.
,
2018
, “
Theoretical Study on the Prediction of the Hydrodynamic Performance of a Savonius Turbine Based on Stagnation Pressure and Impulse Momentum Principle
,”
Energy Convers. Manage.
,
168
, pp.
545
563
. 10.1016/j.enconman.2018.04.065
29.
Prasad
,
D. D.
,
Ra
,
M.
,
Ahmed
,
M. R.
, and
Lee
,
Y. H.
,
2018
, “
Studies on the Performance of Savonius Rotors in a Numerical Wave Tank
,”
Ocean Eng.
,
158
, pp.
29
37
. 10.1016/j.oceaneng.2018.03.084
30.
Alom
,
N.
,
Borah
,
B.
, and
Saha
,
U. K.
,
2018
, “
An Insight Into the Drag and Lift Characteristics of Modified Bach and Benesh Profiles of Savonius Rotor
,”
Energy Procedia
,
144
, pp.
50
56
. 10.1016/j.egypro.2018.06.007
31.
Tahani
,
M.
,
Rabbani
,
A.
,
Kasaeian
,
A.
,
Mehrpooya
,
M.
, and
Mirhosseini
,
M.
,
2017
, “
Design and Numerical Investigation of Savonius Wind Turbine With Discharge Flow Directing Capability
,”
Energy
,
130
, pp.
327
338
. 10.1016/j.energy.2017.04.125
32.
Mercado-Colmenero
,
J. M.
,
Rubio-Paramio
,
M. A.
,
Guerrero-Villar
,
F.
, and
Martin-Doñate
,
C.
,
2018
, “
A Numerical and Experimental Study of a New Savonius Wind Rotor Adaptation Based on Product Design Requirements
,”
Energy Convers. Manage.
,
158
, pp.
210
234
. 10.1016/j.enconman.2017.12.058
33.
Al-Faruk
,
A.
, and
Sharifian
,
A.
,
2016
, “
Geometrical Optimization of a Swirling Savonius Wind Turbine Using an Open Jet Wind Tunnel
,”
Alexandria Eng. J.
,
55
(
3
), pp.
2055
2064
. 10.1016/j.aej.2016.07.005
34.
Driss
,
Z.
,
Mlayeh
,
O.
,
Driss
,
S.
,
Maaloul
,
M.
, and
Abid
,
M. S.
,
2016
, “
Study of the Incidence Angle Effect on the Aerodynamic Structure Characteristics of an Incurved Savonius Wind Rotor Placed in a Wind Tunnel
,”
Energy
,
113
, pp.
894
908
. 10.1016/j.energy.2016.07.112
35.
Ostos
,
I.
,
Ruiz
,
I.
,
Gajic
,
M.
,
Gómez
,
W.
,
Bonilla
,
A.
, and
Collazos
,
C.
,
2019
, “
A Modified Novel Blade Configuration Proposal for a More Efficient VAWT Using CFD Tools
,”
Energy Convers. Manage.
,
180
, pp.
733
746
. 10.1016/j.enconman.2018.11.025
36.
Ferrari
,
G.
,
Federici
,
D.
,
Schito
,
P.
,
Inzoli
,
F.
, and
Mereu
,
R.
,
2017
, “
CFD Study of Savonius Wind Turbine: 3D Model Validation and Parametric Analysis
,”
Renewable Energy
,
105
, pp.
722
734
. 10.1016/j.renene.2016.12.077
37.
Larin
,
P.
,
Paraschivoiu
,
M.
, and
Aygun
,
C.
,
2016
, “
CFD Based Synergistic Analysis of Wind Turbines for Roof Mounted Integration
,”
J. Wind Eng. Ind. Aerodyn.
,
156
, pp.
1
13
. 10.1016/j.jweia.2016.06.007
38.
Roy
,
S.
, and
Ducoin
,
A.
,
2016
, “
Unsteady Analysis on the Instantaneous Forces and Moment Arms Acting on a Novel Savonius-Style Wind Turbine
,”
Energy Convers. Manage.
,
121
, pp.
281
296
. 10.1016/j.enconman.2016.05.044
39.
Menter
,
F. R.
,
1993
, “
Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows
,”
24th Fluid Dynamics Conference
,
Orlando, FL
,
July 6−9
.
40.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Taylor & Francis
,
New York
.
41.
Roy
,
S.
, and
Saha
,
U. K.
,
2015
, “
Wind Tunnel Experiments of a Newly Developed Two-Bladed Savonius-Style Wind Turbine
,”
Appl. Energy
,
137
, pp.
117
125
. 10.1016/j.apenergy.2014.10.022
You do not currently have access to this content.