Abstract

Phase change materials (PCMs), especially salt hydrates possess high volumetric energy storage capacity in their transition temperature range. These materials are used in applications where it is necessary to store thermal energy due to temporary load shift between demand and availability. Thus, possible applications are HVAC, recovery of waste heat, and defense thermal management. Despite salt hydrates potential, the practical feasibility of latent heat storage with salt hydrates is limited due to low power rating, supercooling, phase segregation, and long-term stability. Its low power rating and long-term stability limits its application in most applications. This work experimentally validates the stability and thermal performance of a compact heat exchanger charged with salt hydrate during melting and freezing. The compact heat exchanger was designed with fins on both the heat transfer fluid (HTF) and salt hydrate PCM side. The thermal performance of the latent heat thermal energy storage system (LHTESS) was evaluated for various operating conditions. The results show that LHTESS could achieve an average heat transfer coefficient of 124 and 87 W/(m2 K) during melting and solidification, respectively. The stability of the system in suppressing supercooling was validated over 800 cycles with nucleating agent and active homogenous nucleation techniques. The supercooling was reduced to 3 °C with zinc hydroxyl nitrate as nucleating agent and less than 1 °C with the active homogenous nucleation technique. The LHTESS showed less than 6% degradation in energy storage capacity over 800 cycles.

References

1.
Kumar
,
N.
, and
Banerjee
,
D.
,
2018
, “Phase Change Materials,”
Handbook of Thermal Science and Engineering
,
F.
Kulacki
, ed.,
Springer International Publishing
,
Cham, Switzerland
, pp.
2213
2275
.
2.
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
. 10.1016/S1359-4311(02)00192-8
3.
TaşaltIn
,
N.
,
Öztürk
,
S.
,
KIlInç
,
N.
,
Yüzer
,
H.
, and
Öztürk
,
Z. Z.
,
2009
, “
Simple Fabrication of Hexagonally Well-Ordered AAO Template on Silicon Substrate in Two Dimensions
,”
Appl. Phys. A Mater. Sci. Process.
,
95
(
3
), pp.
781
787
. 10.1007/s00339-009-5071-z
4.
Song
,
M.
,
Niu
,
F.
,
Mao
,
N.
,
Hu
,
Y.
, and
Deng
,
S.
,
2018
, “
Review on Building Energy Performance Improvement Using Phase Change Materials
,”
Energy Build.
,
158
(
1
), pp.
776
793
. 10.1016/j.enbuild.2017.10.066
5.
Tyagi
,
V. V.
,
Kaushik
,
S. C.
,
Tyagi
,
S. K.
, and
Akiyama
,
T.
,
2011
, “
Development of Phase Change Materials Based Microencapsulated Technology for Buildings: A Review
,”
Renew. Sustain. Energy Rev.
,
15
(
2
), pp.
1373
1391
. 10.1016/j.rser.2010.10.006
6.
Cabeza
,
L. F.
,
Ibáñez
,
M.
,
Solé
,
C.
,
Roca
,
J.
, and
Nogués
,
M.
,
May 2006
, “
Experimentation With a Water Tank Including a PCM Module
,”
Sol. Energy Mater. Sol. Cells
,
90
(
9
), pp.
1273
1282
. 10.1016/j.solmat.2005.08.002
7.
Department of Energy
,
2014
, “
The Water-Energy Nexus: Challenges and Opportunities
,” https://www.energy.gov/downloads/water-energy-nexus-challenges-and-opportunities.
8.
Zhou
,
D.
, and
Zhao
,
C. Y.
,
2011
, “
Experimental Investigations on Heat Transfer in Phase Change Materials (PCMs) Embedded in Porous Materials
,”
Appl. Therm. Eng.
,
31
(
5
), pp.
970
977
. 10.1016/j.applthermaleng.2010.11.022
9.
Li
,
T. X.
,
Wu
,
D. L.
,
He
,
F.
, and
Wang
,
R. Z.
,
2017
, “
Experimental Investigation on Copper Foam/Hydrated Salt Composite Phase Change Material for Thermal Energy Storage
,”
Int. J. Heat Mass Transf.
,
115
(
Part A
), pp.
148
157
. 10.1016/j.ijheatmasstransfer.2017.07.056
10.
Duan
,
Z. J.
,
Zhang
,
H. Z.
,
Sun
,
L. X.
,
Cao
,
Z.
,
Xu
,
F.
,
Zou
,
Y. J.
,
Chu
,
H. L.
,
Qiu
,
S. J.
,
Xiang
,
C. L.
, and
Zhou
,
H. Y.
,
2014
, “
CaCl2·6H2O/Expanded Graphite Composite as Form-Stable Phase Change Materials for Thermal Energy Storage
,”
J. Therm. Anal. Calorim.
,
115
(
1
), pp.
111
117
. 10.1007/s10973-013-3311-0
11.
Song
,
Z.
,
Deng
,
Y.
,
Li
,
J.
, and
Nian
,
H.
,
2018
, “
Expanded Graphite for Thermal Conductivity and Reliability Enhancement and Supercooling Decrease of MgCl2⋅6H2O Phase Change Material
,”
Mater. Res. Bull.
,
102
(
1
), pp.
203
208
. 10.1016/j.materresbull.2018.02.024
12.
Hou
,
P.
,
Mao
,
J.
,
Chen
,
F.
,
Li
,
Y.
, and
Dong
,
X.
,
2018
, “
Preparation and Thermal Performance Enhancement of Low Temperature Eutectic Composite Phase Change Materials Based on Na2SO4·10H2O
,”
Materials (Basel)
,
11
(
11
), pp.
1
16
.
13.
He
,
Y.
,
Zhang
,
N.
,
Yuan
,
Y.
,
Cao
,
X.
,
Sun
,
L.
, and
Song
,
Y.
,
2018
, “
Improvement of Supercooling and Thermal Conductivity of the Sodium Acetate Trihydrate for Thermal Energy Storage With α-Fe2O3 as Addictive
,”
J. Therm. Anal. Calorim.
,
133
(
2
), pp.
859
867
. 10.1007/s10973-018-7166-2
14.
Liu
,
Y.
, and
Yang
,
Y.
,
2017
, “
Use of Nano-α-Al2O3 to Improve Binary Eutectic Hydrated Salt as Phase Change Material
,”
Sol. Energy Mater. Sol. Cells
,
160
(
1
), pp.
18
25
. 10.1016/j.solmat.2016.09.050
15.
Li
,
X.
,
Zhou
,
Y.
,
Nian
,
H.
,
Zhang
,
X.
,
Dong
,
O.
,
Ren
,
X.
,
Zeng
,
J.
,
Hai
,
C.
, and
Shen
,
Y.
,
2017
, “
Advanced Nanocomposite Phase Change Material Based on Calcium Chloride Hexahydrate With Aluminum Oxide Nanoparticles for Thermal Energy Storage
,”
Energy Fuels
,
31
(
6
), pp.
6560
6567
. 10.1021/acs.energyfuels.7b00851
16.
Sharifi
,
N.
, and
Bergman
,
T. L.
,
2011
, “
Enhancement of PCM Melting in Enclosures With Horizontally-Finned Internal Surfaces
,”
Int. J. Heat Mass Transf.
,
54
(
19–20
), pp.
4182
4192
. 10.1016/j.ijheatmasstransfer.2011.05.027
17.
Rathod
,
M. K.
, and
Banerjee
,
J.
,
2015
, “
Thermal Performance Enhancement of Shell and Tube Latent Heat Storage Unit Using Longitudinal Fins
,”
Appl. Therm. Eng.
,
75
(
1
), pp.
1084
1092
. 10.1016/j.applthermaleng.2014.10.074
18.
Rahimi
,
M.
,
Ranjbar
,
A. A.
,
Ganji
,
D.
,
Sedighi
,
K.
,
Hosseini
,
M. J.
, and
Bahrampoury
,
R.
,
2014
, “
Analysis of Geometrical and Operational Parameters of PCM in a Fin and Tube Heat Exchanger
,”
Int. Commun. Heat Mass Transf.
,
53
(
1
), pp.
109
115
.
19.
Lane
,
G. A.
,
1992
, “
Phase Change Materials for Energy Storage Nucleation to Prevent Supercooling
,”
Sol. Energy Mater. Sol. Cells
,
27
(
2
), pp.
135
160
. 10.1016/0927-0248(92)90116-7
20.
Ryu
,
H. W.
,
Woo
,
S. W.
,
Shin
,
B. C.
, and
Kim
,
S. D.
,
1992
, “
Prevention of Supercooling and Stabilization of Inorganic Salt Hydrates as Latent Heat Storage Materials
,”
Sol. Energy Mater. Sol. Cells
,
27
(
2
), pp.
161
172
. 10.1016/0927-0248(92)90117-8
21.
Mayinger
,
F.
,
2008
, Heat and Cold Storage With PCM.
22.
Trp
,
A.
,
2005
, “
An Experimental and Numerical Investigation of Heat Transfer During Technical Grade Paraffin Melting and Solidification in a Shell-and-Tube Latent Thermal Energy Storage Unit
,”
Sol. Energy
,
79
(
6
), pp.
648
660
. 10.1016/j.solener.2005.03.006
23.
Medrano
,
M.
,
Yilmaz
,
M. O.
,
Nogués
,
M.
,
Martorell
,
I.
,
Roca
,
J.
, and
Cabeza
,
L. F.
,
2009
, “
Experimental Evaluation of Commercial Heat Exchangers for Use as PCM Thermal Storage Systems
,”
Appl. Energy
,
86
(
10
), pp.
2047
2055
. 10.1016/j.apenergy.2009.01.014
24.
Frazzica
,
A.
,
Palomba
,
V.
,
La Rosa
,
D.
, and
Brancato
,
V.
,
2017
, “
Experimental Comparison of Two Heat Exchanger Concepts for Latent Heat Storage Applications
,”
Energy Procedia
,
135
(
1
), pp.
183
192
. 10.1016/j.egypro.2017.09.501
25.
Ferfera
,
R. S.
, and
Madani
,
B.
,
2020
, “
Thermal Characterization of a Heat Exchanger Equipped With a Combined Material of Phase Change Material and Metallic Foams
,”
Int. J. Heat Mass Transf.
,
148
(
1
), pp.
119
162
. 10.1016/j.ijheatmasstransfer.2019.119162
26.
Sardari
,
P. T.
,
Giddings
,
D.
,
Grant
,
D.
,
Gillott
,
M.
, and
Walker
,
G. S.
,
Apr. 2020
, “
Discharge of a Composite Metal Foam/Phase Change Material to Air Heat Exchanger for a Domestic Thermal Storage Unit
,”
Renew. Energy
,
148
, pp.
987
1001
. 10.1016/j.renene.2019.10.084
27.
Helmns
,
A.
, and
Carey
,
V. P.
,
2017
, “
Modeling of Intramatrix Heat Transfer in Thermal Energy Storage for Asynchronous Cooling
,” p.
V001T09A006
.
28.
Dre
,
H.
,
Carey
,
V. P.
,
Kumar
,
N.
,
Banerjee
,
D.
,
Muley
,
A.
, and
Stoia
,
M.
,
2019
, “
Comparison of Model Predictions and Performance Test Data for a Prototype Thermal Energy Storage Module
,”
ASME 2019 Summer Heat Transfer Conference
,
Bellevue, WA
,
July 14
.
29.
Lázaro
,
A.
,
Günther
,
E.
,
Mehling
,
H.
,
Hiebler
,
S.
,
Marín
,
J. M.
, and
Zalba
,
B.
,
2006
, “
Verification of a T-History Installation to Measure Enthalpy Versus Temperature Curves of Phase Change Materials
,”
Meas. Sci. Technol.
,
17
(
8
), pp.
2168
2174
. 10.1088/0957-0233/17/8/016
30.
Kumar
,
N.
,
Banerjee
,
D.
, and
Chavez
,
R.
,
2018
, “
Exploring Additives for Improving the Reliability of Zinc Nitrate Hexahydrate as a Phase Change Material (PCM)
,”
J. Energy Storage
,
20
(
1
), pp.
153
162
. 10.1016/j.est.2018.09.005
31.
Kumar
,
N.
, and
Banerjee
,
D.
,
2019
, “
Thermal Cycling of Calcium Chloride Hexahydrate With Strontium Chloride as a Phase Change Material for Latent Heat Thermal Energy Storage Applications in a Non-DSC Set-Up.
ASME J. Therm. Sci. Eng. Appl.
,
11
(
5
), p.
051014
. 10.1115/1.4042859
32.
Kumar
,
N.
,
Chavez
,
R.
, and
Banerjee
,
D.
,
2018
, “
Experimental Measurement of Corrosion Involving Inorganics (Salt Hydrates) Phase Change Materials (PCM) for Thermal Energy Storage (TES) Applications
,”
Proceedings of the 17th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITherm 2018
,
San Diego, CA
,
May 29
.
33.
Sastri
,
V. S.
,
Ghali
,
E.
, and
Elboujdaini
,
M.
,
2007
,
Corrosion Prevention and Protection: Practical Solutions
,
John Wiley & Sons
,
Hoboken, NJ
.
34.
Kline
,
S.
, and
McClintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.