Abstract

The evaluation of the quality of unconventional hydrocarbon resources becomes a critical stage toward characterizing these resources, and this evaluation requires the evaluation of the total organic carbon (TOC). Generally, TOC is determined from laboratory experiments; however, it is hard to obtain a continuous profile for the TOC along the drilled formations using these experiments. Another way to evaluate the TOC is through the use of empirical correlation, and the currently available correlations lack the accuracy especially when used in formations other than the ones used to develop these correlations. This study introduces an empirical equation for the evaluation of the TOC in Devonian Duvernay shale from only gamma-ray and spectral gamma-ray logs of uranium, thorium, and potassium as well as a newly developed term that accounts for the TOC from the linear regression analysis. This new correlation was developed based on the artificial neural networks (ANNs) algorithm which was learned on 750 datasets from Well-A. The developed correlation was tested and validated on 226 and 73 datasets from Well-B and Well-C, respectively. The results of this study indicated that for the training data, the TOC was predicted by the ANN with an AAPE of only 8.5%. Using the developed equation, the TOC was predicted with an AAPE of only 11.5% for the testing data. For the validation data, the developed equation overperformed the previous models in estimating the TOC with an AAPE of only 11.9%.

References

1.
Tang
,
H.
,
Sun
,
Z.
,
He
,
Y.
,
Chai
,
Z.
,
Hasan
,
A. R.
, and
Killough
,
J.
,
2019
, “
Investigating the Pressure Characteristics and Production Performance of Liquid-Loaded Horizontal Wells in Unconventional Gas Reservoirs
,”
J. Pet. Sci. Eng.
,
176
, pp.
456
465
.
2.
Zhao
,
P.
,
Ostadhassan
,
M.
,
Shen
,
B.
,
Liu
,
W.
,
Abarghani
,
A.
,
Liu
,
K.
,
Luo
,
M.
, and
Cai
,
J.
,
2019
, “
Estimating Thermal Maturity of Organic-Rich Shale From Well Logs: Case Studies of Two Shale Plays
,”
Fuel
,
235
, pp.
1195
1206
.
3.
Wu
,
Y.
,
Tahmasebi
,
P.
,
Yu
,
H.
,
Lin
,
C.
,
Wu
,
H. A.
, and
Dong
,
C.
,
2020
, “
Pore-Scale 3D Dynamic Modeling and Characterization of Shale Samples: Considering the Effects of Thermal Maturation
,”
J. Geophys. Res.: Solid Earth
,
125
(
1
), pp.
1
22
.
4.
Zhu
,
L.
,
Zhang
,
C.
,
Zhang
,
C.
,
Zhang
,
Z.
,
Zhou
,
X.
,
Liu
,
W.
, and
Zhu
,
B.
,
2020
, “
A New and Reliable Dual Model- and Data-Driven TOC Prediction Concept: A TOC Logging Evaluation Method Using Multiple Overlapping Methods Integrated With Semi-Supervised Deep Learning
,”
J. Pet. Sci. Eng.
,
188
, p.
106944
.
5.
Zou
,
C. N.
,
Tao
,
S. Z.
,
Bai
,
B.
, and
Yang
,
Z.
,
2015
, “
Differences and Relations Between Unconventional and Conventional Oil and Gas
,”
China Pet. Explor.
,
20
(
1
), pp.
1
16
.
6.
Kumar
,
S.
,
Das
,
S.
,
Bastia
,
R.
, and
Ojha
,
K.
,
2018
, “
Mineralogical and Morphological Characterization of Older Cambay Shale From North Cambay Basin, India: Implication for Shale Oil/Gas Development
,”
Mar. Pet. Geol.
,
97
, pp.
339
354
.
7.
Rani
,
S.
,
Padmanabhan
,
E.
, and
Prusty
,
B. K.
,
2019
, “
Review of Gas Adsorption in Shales for Enhanced Methane Recovery and CO2 Storage
,”
J. Pet. Sci. Eng.
,
175
, pp.
634
643
.
8.
Han
,
C.
,
Wu
,
M.
,
Lin
,
W.
,
Kong
,
X.
,
Jiang
,
Z.
,
Gao
,
L.
, and
Han
,
Z.
,
2017
, “
Characteristics of Black Shale Reservoir of Wufeng-Longmaxi Formation in the Southern Sichuan Basin
,”
J. China Univ. Pet.
,
41
(
3
), pp.
14
22
.
9.
Ma
,
L.
,
Taylor
,
K. G.
,
Dowey
,
P. J.
,
Courtois
,
L.
,
Gholinia
,
A.
, and
Lee
,
P. D.
,
2017
, “
Multi-Scale 3D Characterisation of Porosity and Organic Matter in Shales With Variable TOC Content and Thermal Maturity: Examples From the Lublin and Baltic Basins, Poland and Lithuania
,”
Int. J. Coal Geol.
,
180
, pp.
100
112
.
10.
Mahmoud
,
A. A. A.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
,
Abouelresh
,
M.
,
Abdulraheem
,
A.
, and
Ali
,
A.
,
2017
, “
Determination of the Total Organic Carbon (TOC) Based on Conventional Well Logs Using Artificial Neural Network
,”
Int. J. Coal Geol.
,
179
, pp.
72
80
.
11.
Wang
,
H.
,
Wu
,
W.
,
Chen
,
T.
,
Dong
,
X.
, and
Wang
,
G.
,
2019
, “
An Improved Neural Network for TOC, S1 and S2 Estimation Based on Conventional Well Logs
,”
J. Pet. Sci. Eng.
,
176
, pp.
664
678
.
12.
Yang
,
S.
,
Wang
,
N.
,
Li
,
M.-R.
, and
Yu
,
J.
,
2013
, “
The Logging Evaluation of Source Rocks of Triassic Yanchang Formation in Chongxin Area Ordos Basin
,”
Nat. Gas Geosci.
,
24
(
3
), pp.
470
476
.
13.
Carvajal-Ortiz
,
H.
, and
Gentzis
,
T.
,
2015
, “
Critical Considerations When Assessing Hydrocarbon Plays Using Rock-Eval Pyrolysis and Organic Petrology Data: Data Quality Revisited
,”
Int. J. Coal Geol.
,
152
, pp.
113
122
.
14.
Hazra
,
B.
,
Dutta
,
S.
, and
Kumar
,
S.
,
2016
, “
TOC Calculation of Organic Matter Rich Sediments Using Rock-Eval Pyrolysis: Critical Consideration and Insights
,”
Int. J. Coal Geol.
,
169
, pp.
106
115
.
15.
Bolandi
,
V.
,
Kadkhodaie
,
A.
, and
Farzi
,
R.
,
2017
, “
Analyzing Organic Richness of Source Rocks From Well log Data by Using SVM and ANN Classifiers: A Case Study From the Kazhdumi Formation, the Persian Gulf Basin, Offshore Iran
,”
J. Pet. Sci. Eng.
,
151
, pp.
224
234
.
16.
Chen
,
Y.
,
Jiang
,
S.
,
Zhang
,
D.
, and
Liu
,
C.
,
2017
, “
An Adsorbed Gas Estimation Model for Shale Gas Reservoirs via Statistical Learning
,”
Appl. Energy
,
197
, pp.
327
341
.
17.
Daigle
,
H.
,
Hayman
,
N. W.
,
Kelly
,
E. D.
,
Milliken
,
K. L.
, and
Jiang
,
H.
,
2017
, “
Fracture Capture of Organic Pores in Shales
,”
Geophys. Res. Lett.
,
44
(
5
), pp.
2167
2176
.
18.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Abouelresh
,
M.
,
Abdulraheem
,
A.
, and
Ali
,
A.
,
2020
, “
Estimation of the Total Organic Carbon Using Functional Neural Networks and Support Vector Machine
,”
Presented at the 12th International Petroleum Technology Conference and Exhibition
,
Dhahran, Saudi Arabia
,
Jan. 13–15
, Paper No. IPTC-19659-MS.
19.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Ali
,
A.
,
Abouelresh
,
M.
, and
Abdulraheem
,
A.
,
2019
, “
New Robust Model to Evaluate the Total Organic Carbon Using Fuzzy Logic
,”
Presented at the SPE Kuwait Oil & Gas Show and Conference
,
Mishref, Kuwait
,
Oct. 13–16
, Paper No. SPE-198130-MS.
20.
Mathia
,
E.
,
Rexer
,
T. F. T.
,
Thomas
,
K. M.
,
Bowen
,
L.
, and
Aplin
,
A. C.
,
2018
, “
Influence of Clay, Calcareous Microfossils, and Organic Matter on the Nature and Diagenetic Evolution of Pore Systems in Mudstones
,”
J. Geophys. Res.: Solid Earth
,
124
(
1
), pp.
149
174
.
21.
Schmoker
,
J. W.
,
1979
, “
Determination of Organic Content of Appalachian Devonian Shales From Formation-Density Logs
,”
Am. Assoc. Pet. Geol. Bull.
,
63
(
9
), pp.
1504
1509
.
22.
Schmoker
,
J. W.
,
1980
, “
Organic Content of Devonian Shale in Western Appalachian Basin
,”
Am. Assoc. Pet. Geol. Bull.
,
64
(
12
), pp.
2156
2165
.
23.
Passey
,
Q. R.
,
Creaney
,
S.
,
Kulla
,
J. B.
,
Moretti
,
F. J.
, and
Stroud
,
J. D.
,
1990
, “
A Practical Model for Organic Richness From Porosity and Resistivity Logs
,”
Am. Assoc. Pet. Geol. Bull.
,
74
(
12
), pp.
1777
1794
.
24.
Charsky
,
A.
, and
Herron
,
S.
,
2013
, “
Accurate, Direct Total Organic Carbon (TOC) log From a New Advanced Geochemical Spectroscopy Tool: Comparison With Conventional Approaches for TOC Estimation
,”
Proceeding of the AAPG Annual Convention and Exhibition
,
Pittsburg, PA
,
May 19–22
.
25.
Passey
,
Q. R.
,
Bohacs
,
K.
,
Esch
,
W. L.
,
Klimentidis
,
R.
, and
Sinha
,
S.
,
2010
, “
From Oil-Prone Source Rock to Gas-Producing Shale Reservoir-Geologic and Petrophysical Characterization of Unconventional Shale Gas Reservoirs
,”
International Oil and Gas Conference and Exhibition
,
Beijing, China
,
June 8–10
.
26.
Wang
,
J.
,
Gu
,
D.
,
Guo
,
W.
,
Zhang
,
H.
, and
Yang
,
D.
,
2019
, “
Determination of Total Organic Carbon Content in Shale Formations With Regression Analysis
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012907
.
27.
Wang
,
P.
,
Chen
,
Z.
,
Pang
,
X.
,
Hu
,
K.
,
Sun
,
M.
, and
Chen
,
X.
,
2016
, “
Revised Models for Determining TOC in Shale Play: Example From Devonian Duvernay Shale, Western Canada Sedimentary Basin
,”
Mar. Pet. Geol.
,
70
, pp.
304
319
.
28.
Crain
,
E. R.
,
2000
,
Crain’s Petrophysical Handbook
,
Rocky Mountain House
,
Canada
.
29.
Zhao
,
P.
,
Ma
,
H.
,
Rasouli
,
V.
,
Liu
,
W.
,
Cai
,
J.
, and
Huang
,
Z.
,
2017
, “
An Improved Model for Estimating the TOC in Shale Formations
,”
Mar. Pet. Geol.
,
83
, pp.
174
183
.
30.
Ahmed
,
S. A.
,
Mahmoud
,
A. A.
, and
Elkatatny
,
S.
,
2019
, “
Fracture Pressure Prediction Using Radial Basis Function
,”
Presented at the 2019 AADE National Technical Conference and Exhibition
,
Denver, CO
,
Apr. 9–10
, Paper No. AADE-19-NTCE-061.
31.
Ahmed
,
S. A.
,
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2019
, “
Prediction of Pore and Fracture Pressures Using Support Vector Machine
,”
Presented at the 2019 International Petroleum Technology Conference
,
Beijing, China
,
Mar. 26–28
, Paper No. IPTC-19523-MS.
32.
Al-Abduljabbar
,
A.
,
Elkatatny
,
S.
,
Mahmoud
,
A. A.
,
Moussa
,
T.
,
Al-shehri
,
D.
,
Abughaban
,
M.
, and
Al-yami
,
A.
,
2020
, “
Prediction of the Rate of Penetration While Drilling Horizontal Carbonate Reservoirs Using the Self-Adaptive Artificial Neural Networks Technique
,”
Sustainability
,
12
(
4
), p.
1376
.
33.
Al-Abduljabbar
,
A.
,
Mahmoud
,
A. A.
, and
Elkatatny
,
S.
,
2021
, “
Artificial Neural Network Model for Real-Time Prediction of the Rate of Penetration While Horizontally Drilling Natural Gas-Bearing Sandstone Formations
,”
Arabian J. Geosci.
,
14
(
2
), p.
117
.
34.
Alsaihati
,
A.
,
Elkatatny
,
S.
,
Mahmoud
,
A. A.
, and
Abdulraheem
,
A.
,
2021
, “
Use of Machine Learning and Data Analytics to Detect Downhole Abnormalities While Drilling Horizontal Wells, With Real Case Study
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
043201
.
35.
Elkatatny
,
S.
,
Al-AbdulJabbar
,
A.
, and
Mahmoud
,
A. A.
,
2019
, “
New Robust Model to Estimate the Formation Tops in Real-Time Using Artificial Neural Networks (ANN)
,”
Petrophysics
,
60
(
06
), pp.
825
837
.
36.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Chen
,
W.
, and
Abdulraheem
,
A.
,
2019
, “
Estimation of Oil Recovery Factor for Water Drive Sandy Reservoirs Through Applications of Artificial Intelligence
,”
Energies
,
12
(
19
), p.
3671
.
37.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Abdulraheem
,
A.
, and
Mahmoud
,
M.
,
2017
, “
Application of Artificial Intelligence Techniques in Estimating Oil Recovery Factor for Water Drive Sandy Reservoirs
,”
Presented at the 2017 SPE Kuwait Oil & Gas Show and Conference
,
Kuwait City, Kuwait
,
Oct. 15–18,
Paper No. SPE-187621-MS.
38.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
, and
Al-Abduljabbar
,
A.
,
2021
, “
Application of Machine Learning Models for Real-Time Prediction of the Formation Lithology and Tops From the Drilling Parameters
,”
J. Pet. Sci. Eng.
,
203
, p.
108574
.
39.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Ali
,
A.
, and
Moussa
,
T.
,
2019
, “
Estimation of Static Young’s Modulus for Sandstone Formation Using Artificial Neural Networks
,”
Energies
,
12
(
11
), p.
2125
.
40.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
, and
Al-Shehri
,
D.
,
2020
, “
Application of Machine Learning in Evaluation of the Static Young’s Modulus for Sandstone Formations
,”
Sustainability
,
12
(
5
), p.
1880
.
41.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Abduljabbar
,
A.
,
Moussa
,
T.
,
Gamal
,
H.
, and
Al Shehri
,
D.
,
2020
, “
Artificial Neural Networks Model for Prediction of the Rate of Penetration While Horizontally Drilling Carbonate Formations
,”
Proceedings of the 54th US Rock Mechanics/Geomechanics Symposium
,
Golden, CO
,
June 28–July 1
.
42.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Alsabaa
,
A.
, and
Al Shehri
,
D.
,
2020
, “
Functional Neural Networks-Based Model for Prediction of the Static Young's Modulus for Sandstone Formations
,”
Proceedings of the 54th US Rock Mechanics/Geomechanics Symposium
,
Golden, CO
,
June 28–July 1
.
43.
Tan
,
M.
,
Song
,
X.
,
Yang
,
X.
, and
Wu
,
Q.
,
2015
, “
Support-Vector-Regression Machine Technology for Total Organic Carbon Content Prediction From Wireline Logs in Organic Shale: A Comparative Study
,”
J. Nat. Gas Sci. Eng.
,
26
, pp.
792
802
.
44.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Ali
,
A.
,
Abouelresh
,
M.
, and
Abdulraheem
,
A.
,
2019
, “
Evaluation of the Total Organic Carbon (TOC) Using Different Artificial Intelligence Techniques
,”
Sustainability
,
11
(
20
), p.
5643
.
45.
Zhu
,
L.
,
Zhang
,
C.
,
Zhang
,
C.
,
Zhang
,
Z.
,
Nie
,
X.
,
Zhou
,
X.
,
Liu
,
W.
, and
Wang
,
X.
,
2019
, “
Forming a New Small Sample Deep Learning Model to Predict Total Organic Carbon Content by Combining Unsupervised Learning With Semisupervised Learning
,”
Appl. Soft Comput.
,
83
, p.
105596
.
46.
Kadkhodaie-Ilkhchi
,
A.
,
Rahimpour-Bonab
,
H.
, and
Rezaee
,
M.
,
2009
, “
A Committee Machine With Intelligent Systems for Estimation of Total Organic Carbon Content From Petrophysical Data: An Example From Kangan and Dalan Reservoirs in South Pars Gas Field, Iran
,”
Comput. Geosci.
,
35
(
3
), pp.
459
474
.
47.
Shi
,
X.
,
Wang
,
J.
,
Liu
,
G.
,
Yang
,
L.
,
Ge
,
X.
, and
Jiang
,
S.
,
2016
, “
Application of Extreme Learning Machine and Neural Networks in Total Organic Carbon Content Prediction in Organic Shale With Wire Line Logs
,”
J. Nat. Gas Sci. Eng.
,
33
, pp.
687
702
.
48.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Abdulraheem
,
A.
,
Mahmoud
,
M.
,
Ibrahim
,
M. O.
, and
Ali
,
A.
,
2017b
, “
New Technique to Determine the Total Organic Carbon Based on Well Logs Using Artificial Neural Network (White Box)
,”
Proceedings of the SPE Kingdom Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
Apr. 24–27
. Paper No. SPE-188016-MS.
49.
Elkatatny
,
S.
,
2018
, “
Self-Adaptive Artificial Neural Network Technique to Predict Total Organic Carbon (TOC) Based on Well Logs
,”
Arabian J. Sci. Eng.
,
44
(
6
), pp.
6127
6137
.
50.
Creaney
,
S.
,
Allan
,
J.
,
Cole
,
K. S.
,
Fowler
,
M. G.
,
Brooks
,
P. W.
,
Osadetz
,
K. G.
, and
Riediger
,
C. L.
,
1994
,
Geological Atlas of the Western Canada Sedimentary Basin, Chapter 31 – Petroleum Generation and Migration in the Western Canada Sedimentary Basin
,
Canadian Society of Petroleum Geologists and Alberta Research Council
, pp.
455
468
.
51.
Rokosh
,
C. D.
,
Lyster
,
S.
,
Anderson
,
S. D. A.
,
Beaton
,
A. P.
,
Berhane
,
H.
,
Brazzoni
,
T.
,
Chen
,
D.
,
Cheng
,
Y.
,
Mack
,
T.
,
Pana
,
C.
, and
Pawlowicz
,
J. G.
,
2012
,
Summary of Alberta's Shale-and Siltstone-Hosted Hydrocarbon Resource Potential. ERCB/AGS Open File Report
,
Energy Resources Conservation Board
,
Alberta, Canada
, p.
8
.
You do not currently have access to this content.