Abstract

The rock unconfined compressive strength (UCS) is one of the key parameters for geomechanical and reservoir modeling in the petroleum industry. Obtaining the UCS by conventional methods such as experimental work or empirical correlation from logging data are time consuming and highly cost. To overcome these drawbacks, this paper utilized the help of artificial intelligence (AI) to predict (in a real-time) the rock strength from the drilling parameters using two AI tools. Random forest (RF) based on principal component analysis (PCA), and functional network (FN) techniques were employed to build two UCS prediction models based on the drilling data such as weight on bit (WOB), drill string rotating speed (RS), drilling torque (T), stand-pipe pressure (SPP), mud pumping rate (Q), and the rate of penetration (ROP). The models were built using 2333 data points from well (A) with 70:30 training to testing ratio. The models were validated using unseen dataset (1300 data points) of well (B) which is located in the same field and drilled across the same complex lithology. The results of the PCA-based RF model outperformed the FN in terms of correlation coefficient (R) and average absolute percentage error (AAPE). The overall accuracy for PCA-based RF was R of 0.99 and AAPE of 4.3%, and for FN yielded R of 0.97 and AAPE of 8.5%. The validation results showed that R was 0.99 for RF and 0.96 for FN, while the AAPE was 4% and 7.9% for RF and FN models, respectively. The developed PCA-based RF and FN models provide an accurate UCS estimation in real-time from the drilling data, saving time and cost, and enhancing the well stability by generating UCS log from the rig drilling data.

References

1.
Chau
,
K. T.
, and
Wong
,
R. H. C.
,
1996
, “
Uniaxial Compressive Strength and Point Load Strength of Rocks
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
33
(
2
), pp.
183
188
.
2.
Fjar
,
E.
,
Holt
,
R. M.
,
Raaen
,
A. M.
, and
Horsrud
,
P.
,
2008
,
Petroleum Related Rock Mechanics
,
Elsevier
,
New York
.
3.
Shi
,
X.
,
Meng
,
Y.
,
Li
,
G.
,
Li
,
J.
,
Tao
,
Z.
, and
Wei
,
S.
,
2015
, “
Confined Compressive Strength Model of Rock for Drilling Optimization
,”
Petroleum
,
1
(
1
), pp.
40
45
.
4.
Liu
,
H.
,
2017
, “Rock Mechanics,”
Principles and Applications of Well Logging
,
Springer
,
Berlin
, pp.
237
269
.
5.
Abdulraheem
,
A.
,
Ahmed
,
M.
,
Vantala
,
A.
, and
Parvez
,
T.
,
2009
, “
Prediction of Rock Mechanical Parameters for Hydrocarbon Reservoirs Using Different Artificial Intelligence Techniques
,”
SPE Saudi Arabia Section Technical Symposium
,
Al-Khobar, Saudi Arabia
,
May
,
Society of Petroleum Engineers
, p.
2
.
6.
Militzer
,
H.
, and
Stoll
,
R.
,
1973
, “
Einige Beitrageder Geophysics zur Primadatenerfassung im Bergbau
,”
Neue Bergbautechnik
,
3
(
1
), pp.
21
25
.
7.
Golubev
,
A. A.
, and
Rabinovich
,
G.
,
1976
, “
Resultaty Primeneia Appartury Akusticeskogo Karotasa Dlja Predeleina Proconstych Svoistv Gornych Porod na Mestorosdeniaach Tverdych Isjopaemych
,”
Prikl. Geofiz. Moskva
,
73
, pp.
109
116
.
8.
Chang
,
C.
,
Zoback
,
M. D.
, and
Khaksar
,
A.
,
2006
, “
Empirical Relations Between Rock Strength and Physical Properties in Sedimentary Rocks
,”
J. Pet. Sci. Eng.
,
51
(
3–4
), pp.
223
237
.
9.
Mostofi
,
M.
,
Rahimzadeh
,
H.
, and
Shahbazi
,
K.
,
2011
, “
The Development of a New Sonic Correlation for UCS Estimation From Drilling Data
,”
Pet. Sci. Technol.
,
29
(
7
), pp.
728
734
.
10.
Nabaei
,
M.
, and
Shahbazi
,
K.
,
2012
, “
A New Approach for Predrilling the Unconfined Rock Compressive Strength Prediction
,”
Pet. Sci. Technol.
,
30
(
4
), pp.
350
359
.
11.
Amani
,
A.
, and
Shahbazi
,
K.
,
2013
, “
Prediction of Rock Strength Using Drilling Data and Sonic Logs
,”
Int. J. Comput. Appl.
,
81
(
2
), pp.
5
10
.
12.
Kalogirou
,
S.
,
2003
, “
Artificial Intelligence for the Modeling and Control of Combustion Processes: A Review
,”
Prog. Energy Combust. Sci.
,
29
(
6
), pp.
515
566
.
13.
Elsafi
,
S. H.
,
2014
, “
Artificial Neural Networks (ANNs) for Flood Forecasting at Dongola Station in the River Nile, Sudan
,”
Alexandria Eng. J.
,
53
(
3
), pp.
655
662
.
14.
Azab
,
A.
,
Alazab
,
M.
, and
Aiash
,
M.
,
2016,
Machine Learning Based Botnet Identification Traffic
,”
2016 IEEE Trustcom/BigDataSE/ISPA
,
Tianjin, China
,
Aug.
,
IEEE
, pp.
1788
1794
.
15.
Gadekallu
,
T. R.
,
Rajput
,
D. S.
,
Reddy
,
M. P. K.
,
Lakshmanna
,
K.
,
Bhattacharya
,
S.
,
Singh
,
S.
,
Jolfaei
,
A.
, and
Alazab
,
M.
,
2020
, “
A Novel PCA–Whale Optimization-Based Deep Neural Network Model for Classification of Tomato Plant Diseases Using GPU
,”
J. Real-Time Image Process.
, pp.
1
14
.
16.
Yarveicy
,
H.
,
Ghiasi
,
M. M.
, and
Mohammadi
,
A. H.
,
2018
, “
Performance Evaluation of the Machine Learning Approaches in Modeling of CO2 Equilibrium Absorption in Piperazine Aqueous Solution
,”
J. Mol. Liq.
,
255
, pp.
375
383
.
17.
Mousa
,
T.
,
Elkatatny
,
S. M.
,
Mahmoud
,
M. A.
, and
Abdulraheem
,
A.
,
2018
, “
Development of New Permeability Formulation From Well log Data Using Artificial Intelligence Approaches
,”
ASME J. Energy Resour. Technol.
140
(
7
), p.
072903
.
18.
Elkatatny
,
S.
, and
Mahmoud
,
M.
,
2018
. “
Development of New Correlations for the Oil Formation Volume Factor in Oil Reservoirs Using Artificial Intelligent White Box Technique
,”
Petroleum
,
4
(
2
), pp.
178
186
.
19.
Alsabaa
,
A.
,
Gamal
,
H.
,
Elkatatny
,
S. M.
, and
Abdulraheem
,
A.
,
2020
, “
Real-Time Prediction of Rheological Properties of All-Oil Mud Using Artificial Intelligence
,”
Presented at the 54th US Rock Mechanics/Geomechanics Symposium
,
Golden CO
,
Sept. 18
,
American Rock Mechanics Association
, pp.
2
3
. https://www.armarocks.org/resources/golden-2020-symposium/#toggle-id-1
20.
Abdelgawad
,
K.
,
Elkatatny
,
S.
,
Moussa
,
T.
,
Mahmoud
,
M.
, and
Patil
,
S.
,
2018
, “
Real Time Determination of Rheological Properties of Spud Drilling Fluids Using a Hybrid Artificial Intelligence Technique
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032908
.
21.
Alsabaa
,
A.
,
Gamal
,
H.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2020
, “
Real-Time Prediction of Rheological Properties of Invert Emulsion Mud Using Adaptive Neuro-Fuzzy Inference System
,”
Sensors
,
20
(
6
), p.
1669
.
22.
Elkatatny
,
S.
,
Tariq
,
Z.
,
Mahmoud
,
M.
,
Mohamed
,
I.
, and
Abdulraheem
,
A.
,
2018
, “
Development of New Mathematical Model for Compressional and Shear Sonic Times From Wireline Log Data Using Artificial Intelligence Neural Networks (White Box)
,”
Arabian J. Sci. Eng.
,
43
(
11
), pp.
6375
6389
.
23.
Tariq
,
Z.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2016,
A Holistic Approach to Develop New Rigorous Empirical Correlation for Static Young’s Modulus
,”
Presented at Abu Dhabi International Petroleum Exhibition & Conference
,
Abu Dhabi, UAE
,
Nov. 7–10
, Paper No. SPE-183545-MS.
24.
Tariq
,
Z.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
,
Ali
,
A. Z.
, and
Abdulraheem
,
A.
,
2017
, “
A New Approach to Predict Failure Parameters of Carbonate Rocks Using Artificial Intelligence Tools
,”
Presented at SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
Apr. 24–27
, Paper No. SPE-187974-MS.
25.
Tariq
,
Z.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
,
Ali
,
A. Z.
, and
Abdulraheem
,
A.
,
2017
, “
A New Technique to Develop Rock Strength Correlation Using Artificial Intelligence Tools
,”
Presented at the SPE Reservoir Characterisation and Simulation Conference and Exhibition
,
May
,
Society of Petroleum Engineers
, Paper No. SPE-186062-MS.
26.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Ali
,
A.
,
Abouelresh
,
M.
, and
Abdulraheem
,
A.
,
2019
, “
New Robust Model to Evaluate the Total Organic Carbon Using Fuzzy Logic
,”
Presented at the SPE Kuwait Oil & Gas Show and Conference
,
Mishref, Kuwait
,
Oct. 13–16
, Paper No. SPE-198130-MS.
27.
Alsaihati
,
A.
,
Elkatatny
,
S.
,
Mahmoud
,
A. A.
, and
Abdulraheem
,
A.
,
2020
, “
Use of Machine Learning and Data Analytics to Detect Downhole Abnormalities While Drilling Horizontal Wells, With Real Case Study
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
043201
.
28.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Al-AbdulJabbar
,
A.
,
Moussa
,
T.
,
Gamal
,
H.
, and
Shehri
,
D. A.
,
2020
, “
Artificial Neural Networks Model for Prediction of the Rate of Penetration While Horizontally Drilling Carbonate Formations
,”
Presented at the 54th US Rock Mechanics/Geomechanics Symposium 2020
,
Golden, CO
,
Sept. 18
,
American Rock Mechanics Association
, pp.
1
3
. https://www.armarocks.org/resources/golden-2020-symposium/#toggle-id-1
29.
Al-Abduljabbar
,
A.
,
Gamal
,
H.
, and
Elkatatny
,
S.
,
2020
, “
Application of Artificial Neural Network to Predict the Rate of Penetration for S-Shape Well Profile
,”
Arab. J. Geosci.
,
13
(
16
), p.
784
.
30.
Asadi
,
A.
,
2017
, “
Application of Artificial Neural Networks in Prediction of Uniaxial Compressive Strength of Rocks Using Well Logs and Drilling Data
,”
Procedia Eng.
,
191
, pp.
279
286
.
31.
Tariq
,
Z.
,
Abdulraheem
,
A.
,
Mahmoud
,
M.
,
Elkatatny
,
S.
,
Ali
,
A. Z.
,
Al-Shehri
,
D.
, and
Belayneh
,
M. W.
,
2019
, “
A New Look Into the Prediction of Static Young’s Modulus and Unconfined Compressive Strength of Carbonate Using Artificial Intelligence Tools
,”
Pet. Geosci.
,
25
(
4
), pp.
389
399
.
32.
Hassanvand
,
M.
,
Moradi
,
S.
,
Fattahi
,
M.
,
Zargar
,
G.
, and
Kamari
,
M.
,
2018
, “
Estimation of Rock Uniaxial Compressive Strength for an Iranian Carbonate Oil Reservoir: Modeling vs. Artificial Neural Network Application
,”
Pet. Res.
,
3
(
4
), pp.
336
345
.
33.
Jackson
,
C. E.
, and
Heysse
,
D. R.
,
1994
, “
Improving Formation Evaluation by Resolving Differences Between LWD and Wireline Log Data
,”
Paper Presented at the SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Sept. 25–28
, Paper No. SPE-28428-MS, pp.
1
3
.
34.
Dawson
,
R.
,
2011
, “
How Significant Is a Boxplot Outlier?
,”
J. Stat. Educ.
,
19
(
2
)
35.
Castagna
,
J. P.
,
Batzle
,
M. L.
, and
Eastwood
,
R. L.
,
1985
, “
Relationships Between Compressional-Wave and Shear-Wave Velocities in Clastic Silicate Rocks
,”
Geophysics
,
50
(
4
), pp.
571
581
.
36.
de Augusto
,
F. O. A.
, and
Martins
,
J. L.
,
2009
, “
A Well-Log Regression Analysis for P-Wave Velocity Prediction in the Namorado Oil Field, Campos Basin
,”
Rev. Bras. Geof.
,
27
(
4
), pp.
595
608
.
37.
Hegde
,
C.
, and
Gray
,
K.
,
2017
, “
Use of Machine Learning and Data Analytics to Increase Drilling Efficiency for Nearby Wells
,”
J. Nat. Gas Sci. Eng.
,
40
, pp.
327
335
.
38.
Yarveicy
,
H.
,
Saghafi
,
H.
,
Ghiasi
,
M. M.
, and
Mohammadi
,
A. H.
,
2019
, “
Decision Tree-Based Modeling of CO2 Equilibrium Absorption in Different Aqueous Solutions of Absorbents
,”
Environ. Prog. Sustain. Energy
,
38
(
s1
), pp.
S441
S448
.
39.
Yarveicy
,
H.
, and
Ghiasi
,
M. M.
,
2017
, “
Modeling of Gas Hydrate Phase Equilibria: Extremely Randomized Trees and LSSVM Approaches
,”
J. Mol. Liq.
,
243
, pp.
533
541
.
40.
Efron
,
B.
,
1982
,
The Jackknife, the Bootstrap and Other Resampling Plans
,
SIAM
.
41.
Hedge
,
C.
,
Wallace
,
S.
, and
Gray
,
K.
,
2015
, “
Using Trees, Bagging, and Random Forest to Predict Rate of Penetration During Drilling
,”
Proceeding of the SPE Middle East Intelligence Oil and Gas Conference and Exhibition
,
Dubai, UAE
,
Sept. 15–16
, Paper No. SPE-176792-MS.
42.
Tharwat
,
A.
,
2016
, “
Principal Component Analysis—A Tutorial
,”
Int. J. Appl. Pattern Recognit.
,
3
(
3
), p.
197
.
43.
Reddy
,
G. T.
,
Reddy
,
M. P. K.
,
Lakshmanna
,
K.
,
Kaluri
,
R.
,
Rajput
,
D. S.
,
Srivastava
,
G.
, and
Baker
,
T.
,
2020
, “
Analysis of Dimensionality Reduction Techniques on Big Data
,”
IEEE Access
,
8
, pp.
54776
54788
.
44.
Smith
,
L. I.
,
2002
, “
A Tutorial on Principal Component Analysis
,” http://www.cs.otago.ac.nz/cosc453/student tutorials/principal components.pdf
45.
Castillo
,
E.
,
1998
, “
Functional Networks
,”
Neural Process. Lett.
,
7
(
3
), pp.
151
159
.
46.
Castillo
,
E.
,
Cobo
,
A.
,
Gutiérrez
,
J. M.
, and
Pruneda
,
R. E.
,
1999
,
Functional Networks With Applications
,
Springer US
,
Boston, MA
.
47.
Castillo
,
E.
,
Cobo
,
A.
,
Gutierrez
,
J. M.
, and
Pruneda
,
E.
,
2000
, “
Functional Networks: A New Network-Based Methodology
,”
Comput. Aided Civil Infrastruct. Eng.
,
15
(
2
), pp.
90
106
.
48.
Anifowose
,
F.
,
Labadin
,
J.
, and
Abdulraheem
,
A.
,
2013
, “
A Least-Square-Driven Functional Networks Type-2 Fuzzy Logic Hybrid Model for Efficient Petroleum Reservoir Properties Prediction
,”
Neural Comput. Appl.
,
23
(
S1
), pp.
179
190
.
49.
Castillo
,
E.
,
Gutiérrez
,
J. M.
,
Hadi
,
A. S.
, and
Lacruz
,
B.
,
2001
, “
Some Applications of Functional Networks in Statistics and Engineering
,”
Technometrics
,
43
(
1
), pp.
10
24
.
50.
Ahmed
,
A.
, and
Khalid
,
M.
,
2018
, “
An Intelligent Framework for Short-Term Multi-Step Wind Speed Forecasting Based on Functional Networks
,”
Appl. Energy
,
225
, pp.
902
911
.
51.
Anifowose
,
F.
, and
Abdulraheem
,
A.
,
2011
, “
Fuzzy Logic-Driven and SVM-Driven Hybrid Computational Intelligence Models Applied to Oil and Gas Reservoir Characterization
,”
J. Nat. Gas Sci. Eng.
,
3
(
3
), pp.
505
517
.
52.
Abdulmalek
,
A. S.
,
Elkatatny
,
S.
,
Abdulraheem
,
A.
,
Mahmoud
,
M.
,
Ali
,
A. Z.
, and
Mohamed
,
I. M.
,
2018
, “
New Approach to Predict Fracture Pressure Using Functional Networks
,”
Paper Presented at the Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
Apr. 23–26
.
You do not currently have access to this content.