Abstract

This article presents the development of a geometric model for the full-cycle simulation of a spark ignition engine fueled with a biomass-derived syngas. The engine simulations are carried out in KIVA 4, using a global reaction mechanism. This model aims to predict the parameters that stipulate the engine performance and NO emissions. The domain undergoes a convergence process to select the appropriate mesh size for the simulations. Then, in order to assess the veracity of the results obtained in the simulations, a comparison is made with experimental data reported in the literature. In this way, it was concluded that the developed model successfully predicts the mixing process, the combustion of the gas, the indicated parameters, and the NO emissions of the real engine, presenting admissible differences regarding the experimental results. Finally, with the validated model, simulations are carried out, modifying different ignition parameters, seeking to evidence the engine operation as a function of these variables. The results demonstrate that it is possible to obtain improvements in the engine performance and its polluting emissions, altering the ignition energy, ignition timing, or spark location.

References

1.
Arroyo
,
J.
,
Moreno
,
F.
,
Muñoz
,
M.
,
Monné
,
C.
, and
Bernal
,
N.
,
2014
, “
Combustion Behavior of a Spark Ignition Engine Fueled With Synthetic Gases Derived From Biogas
,”
Fuel
,
117
(
Part A
), pp.
50
58
.
2.
Monteiro
,
E.
,
Sotton
,
J.
,
Bellenoue
,
M.
,
Moreira
,
N. A.
, and
Malheiro
,
S.
,
2011
, “
Experimental Study of Syngas Combustion at Engine-Like Conditions in a Rapid Compression Machine
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1473
1479
.
3.
Zhang
,
J.
,
Chen
,
G.
,
Shen
,
Y.
,
Li
,
B.
, and
Li
,
Q.
,
2021
, “
Effects of Oxygenated Biomass Fuels on the Performance of Diesel Engine and After-Treatment System
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082304
.
4.
El-Nagar
,
R. A.
, and
Ghanem
,
A. A.
,
2019
, “
Syngas Production, Properties, and Its Importance
,”
Sustainable Altern. Syngas Fuel.
5.
Molino
,
A.
,
Larocca
,
V.
,
Chianese
,
S.
, and
Musmarra
,
D.
,
2018
, “
Biofuels Production by Biomass Gasification: A Review
,”
Energies
,
11
(
4
), p.
811
.
6.
Martínez
,
J. D.
,
Mahkamov
,
K.
,
Andrade
,
R. V.
, and
Silva Lora
,
E. E.
,
2012
, “
Syngas Production in Downdraft Biomass Gasifiers and Its Application Using Internal Combustion Engines
,”
Renewable Energy
,
38
(
1
), pp.
1
9
.
7.
Lin
,
J. C. M.
,
2007
, “
Combination of a Biomass Fired Updraft Gasifier and a Stirling Engine for Power Production
,”
ASME J. Energy Resour. Technol.
,
129
(
1
), pp.
66
70
.
8.
Fiore
,
M.
,
Magi
,
V.
, and
Viggiano
,
A.
,
2020
, “
Internal Combustion Engines Powered by Syngas: A Review
,”
Appl. Energy
,
276
, p.
115415
.
9.
Herdem
,
M. S.
,
Lorena
,
G.
, and
Wen
,
J. Z.
,
2019
, “
Simulation and Performance Investigation of a Biomass Gasification System for Combined Power and Heat Generation
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112002
.
10.
Amador
,
G.
,
Forero
,
J. D.
,
Rincon
,
A.
,
Fontalvo
,
A.
,
Bula
,
A.
,
Padilla
,
R. V.
, and
Orozco
,
W.
,
2017
, “
Characteristics of Auto-Ignition in Internal Combustion Engines Operated With Gaseous Fuels of Variable Methane Number
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042205
.
11.
Bates
,
R. P.
, and
Dölle
,
K.
,
2017
, “
Syngas Use in Internal Combustion Engines—A Review
,”
Adv. Res.
,
10
(
1
), pp.
1
8
.
12.
Yaïci
,
W.
, and
Longo
,
M.
,
2022
, “
Assessment of Renewable Natural Gas Refueling Stations for Heavy-Duty Vehicles
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
070901
.
13.
Fischer
,
M.
, and
Jiang
,
X.
,
2014
, “
An Assessment of Chemical Kinetics for Bio-Syngas Combustion
,”
Fuel
,
137
, pp.
293
305
.
14.
Pérez Gordillo
,
D. S.
,
2019
, “
Estudio computacional de la combustión premezclada de un gas producto de la gasificación de biomasa en un motor de combustión interna (MCI)
,”
Tesis de Maestría en Ingeniería Mecánica
,
Universidad Nacional de Colombia
,
sede Bogotá
.
15.
Wen
,
G. H.
,
Yu
,
S.
, and
Reitz
,
R.
,
2011
,
Computational Optimization of Internal Combustion Engines
,
Springer
,
New York
.
16.
Boloy
,
R. A. M.
,
Silveira
,
J. L.
,
Tuna
,
C. E.
,
Coronado
,
C. R.
, and
Antunes
,
J. S.
,
2011
, “
Ecological Impacts From Syngas Burning in Internal Combustion Engine: Technical and Economic Aspects
,”
Renewable Sustainable Energy Rev.
,
15
(
9
), pp.
5194
5201
.
17.
Visakhamoorthy
,
S.
,
Tzanetakis
,
T.
,
Haggith
,
D.
,
Sobiesiak
,
A.
, and
Wen
,
J. Z.
,
2012
, “
Numerical Study of a Homogeneous Charge Compression Ignition (HCCI) Engine Fueled With Biogas
,”
Appl. Energy
,
92
, pp.
437
446
.
18.
Wang
,
Z.
,
Zhou
,
Y.
,
Whiddon
,
R.
,
He
,
Y.
,
Cen
,
K.
, and
Li
,
Z.
,
2016
, “
Investigation of NO Formation in Premixed Adiabatic Laminar Flames of H2/CO Syngas and Air by Saturated Laser-Induced Fluorescence and Kinetic Modeling
,”
Combust. Flame
,
164
, pp.
283
293
.
19.
Ali
,
K.
,
Kim
,
C.
,
Lee
,
Y.
,
Oh
,
S.
, and
Kim
,
K.
,
2020
, “
A Numerical Study to Investigate the Effect of Syngas Composition and Compression Ratio on the Combustion and Emission Characteristics of a Syngas-Fueled HCCI Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
092301
.
20.
Saeed
,
K.
,
2016
, “
Modelling of Oxide of Nitrogen Formation in a Lean Burn Premixed Charge Stirred Chemical Reactor Based Engines
,”
J. Energy Inst.
,
89
(
4
), pp.
513
524
.
21.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
22.
Raine
,
R. R.
,
Stone
,
C. R.
, and
Gould
,
J.
,
1995
, “
Modeling of Nitric Oxide Formation in Spark Ignition Engines With a Multizone Burned Gas
,”
Combust. Flame
,
102
(
3
), pp.
241
255
.
23.
Caputo
,
C.
,
Cirillo
,
D.
,
Costa
,
M.
,
Di Blasio
,
G.
,
Di Palma
,
M.
,
Piazzullo
,
D.
, and
Vujanović
,
M.
,
2019
, “
Multi-Level Modeling of Real Syngas Combustion in a Spark Ignition Engine and Experimental Validation
,”
SAE
Technical Papers, September 9.
24.
Wei
,
L.
,
Li
,
X.
,
Yang
,
W.
,
Dai
,
Y.
, and
Wang
,
C. H.
,
2020
, “
Optimization of Operation Strategies of a Syngas-Fueled Engine in a Distributed Gasifier-Generator System Driven by Horticulture Waste
,”
Energy Convers. Manage.
,
208
, p.
112580
.
25.
Ali
,
K.
,
Kim
,
C.
,
Lee
,
Y.
,
Oh
,
S.
, and
Kim
,
K.
,
2021
, “
A Comparative Numerical Study of the Combustion Performance of the Syngas-Fueled HCCI Engine Using a Toroidal Piston, Square Bowl Piston, and Flat Piston Shape at Different Loads
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
072305
.
26.
Rinaldini
,
C. A.
,
Allesina
,
G.
,
Pedrazzi
,
S.
,
Mattarelli
,
E.
, and
Tartarini
,
P.
,
2019
, “
Modeling and Optimization of Industrial Internal Combustion Engines Running on Diesel/Syngas Blends
,”
Energy Convers. Manage.
,
182
, pp.
89
94
.
27.
Caligiuri
,
C.
,
Žvar Baškovič
,
U.
,
Renzi
,
M.
,
Seljak
,
T.
,
Oprešnik
,
S. R.
,
Baratieri
,
M.
, and
Katrašnik
,
T.
,
2021
, “
Complementing Syngas With Natural Gas in Spark Ignition Engines for Power Production: Effects on Emissions and Combustion
,”
Energies
,
14
(
12
), p.
3688
.
28.
Ramalingam
,
S.
,
Ezhumalai
,
M.
, and
Govindasamy
,
M.
,
2019
, “
Syngas: Derived From Biodiesel and Its Influence on CI Engine
,”
Energy
,
189
, p.
116189
.
29.
Krishnamoorthi
,
M.
,
Sreedhara
,
S.
, and
Prakash Duvvuri
,
P.
,
2020
, “
Experimental, Numerical and Exergy Analyses of a Dual Fuel Combustion Engine Fuelled With Syngas and Biodiesel/Diesel Blends
,”
Appl. Energy
,
263
, p.
114643
.
30.
Veses
,
A.
,
Martínez
,
J. D.
,
Callén
,
M. S.
,
Murillo
,
R.
, and
García
,
T.
,
2020
, “
Application of Upgraded Drop-In Fuel Obtained From Biomass Pyrolysis in a Spark Ignition Engine
,”
Energies
,
13
(
8
), p.
2089
.
31.
Hagos
,
F. Y.
,
Rashid
,
A.
,
Aziz
,
A.
, and
Sulaiman
,
S. A.
,
2013
, “
Study of Syngas Combustion Parameters Effect on Internal Combustion Engine
,”
Asian J. Sci. Res.
,
6
(
2
), pp.
187
196
.
32.
Hagos
,
F. Y.
,
Aziz
,
A.R.A.
, and
Sulaiman
,
S. A.
,
2014
, “
Trends of Syngas as a Fuel in Internal Combustion Engines
,”
Adv. Mech. Eng.
,
6
.
33.
Piazzullo
,
D.
,
Costa
,
M.
,
Petranovic
,
Z.
,
Vujanovic
,
M.
,
La Villetta
,
M.
,
Caputo
,
C.
, and
Cirillo
,
D.
,
2018
, “
CFD Modelling of a Spark Ignition Internal Combustion Engine Fuelled With Syngas for a mCHP System
,”
Chem. Eng. Trans.
,
65
, pp.
13
18
.
34.
Sridhar
,
G.
,
Dasappa
,
S.
,
Sridhar
,
H. V.
,
Paul
,
P. J.
, and
Rajan
,
N. K. S.
,
2005
, “
Gaseous Emissions Using Producer Gas As Fuel in Reciprocating Engines
,”
SAE
Technical Papers.
35.
Lombardini a Kohler Company
, “
Lombardini LGW-523-MPI Engine Datasheet
,” Cod. 3558223-11-2008.
36.
Kosmadakis
,
G. M.
,
Rakopoulos
,
D. C.
, and
Rakopoulos
,
C. D.
,
2015
, “
Investigation of Nitric Oxide Emission Mechanisms in a SI Engine Fueled With Methane/Hydrogen Blends Using a Research CFD Code
,”
Int. J. Hydrogen Energy
,
40
(
43
), pp.
15088
15104
.
37.
Amsden
,
A.
,
1997
, “
KIVA-3V: A Block Structured KIVA Program for Engines With Vertical or Canted Valves
,” Technical Report No. LA-13313-MS, Los Alamos National Laboratory.
38.
Amsden
,
A.
,
1999
, “
KIVA-3V, Release 2, Improvements to KIVA-3V
,” Technical Report No. LA-UR-99-915, Los Alamos National Laboratory.
39.
Barrera
,
C.
,
Pérez
,
D.
,
Forigua
,
C.
, and
Mantilla
,
J.
,
2021
, “
Open Source Extensions Applied to Meshing Problems for KIVA 4
,”
Int. J. Appl. Sci. Eng.
,
18
(
1
), p.
2020135
.
40.
Amsden
,
A.
,
1989
, “
KIVA-2: A Computer Program for Chemically Reactive Flows With Sprays
,” Technical Report,
Los Alamos National Laboratory
.
41.
Holst
,
M. J.
,
1992
, “
Notes on the KIVA-2 Software and Chemically Reactive Fluid Mechanics
,”
Numer. Math. Gr. Comput. Math. Res. Div. Lawrence Livermore National Laboratory
.
42.
Torres
,
D. J.
, and
Trujillo
,
M. F.
,
2006
, “
KIVA-4: An Unstructured ALE Code for Compressible Gas Flow With Sprays
,”
J. Comput. Phys.
,
219
(
2
), pp.
943
975
.
43.
Forigua
,
C.
,
2015
, “
Desarrollo software de un módulo de cinética química en fase gaseosa para simulación 3D de motores de combustión interna
,”
Tesis de Maestría en Ingeniería Mecánica
,
Universidad Nacional de Colombia
,
Sede Bogotá
.
44.
Torres
,
D.
,
2007
, “
KIVA-4 Manual
,” LA Report No. LAUR-07-2007,
Los Alamos National Laboratory
.
45.
Battistoni
,
M.
,
Mariani
,
F.
,
Risi
,
F.
, and
Poggiani
,
C.
,
2015
, “
Combustion CFD Modeling of a Spark Ignited Optical Access Engine Fueled With Gasoline and Ethanol
,”
Energy Procedia
,
82
, pp.
424
431
.
46.
Turns
,
S.
,
2000
,
An Introduction to Combustion
, 2nd ed.,
McGraw-Hill
,
New York
.
47.
Zhang
,
Y.
, and
Liu
,
Y.
,
2017
, “
Numerical Simulation of Hydrogen Combustion: Global Reaction Model and Validation
,”
Front. Energy Res.
,
5
, p.
Article 31
.
48.
Franzelli
,
B.
,
Riber
,
E.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulation of Combustion Instabilities in a Lean Partially Premixed Swirled Flame
,”
Combust. Flame
,
159
(
2
), pp.
621
637
.
49.
Hessel
,
R.
Randy Hessel’s ERC Home Page (ERC’s Page of FAQ’s)
,”
Engine Research Center, University of Wisconsin–Madison
. http://homepages.cae.wisc.edu/∼hessel/faqs/index_faq.htm, Accessed January 17, 2020.
You do not currently have access to this content.