Abstract

The deep learning model constituting two neural network models (i.e., densely connected and long short-term memory) has been applied for automatic characterization of dual-porosity reservoirs with infinite, constant pressure, and no-flow external boundaries. A total of 16 different prediction paradigms have been constructed (one classifier to identify the reservoir models and 15 regressors for predicting the dual-porosity reservoir characteristics). Indeed, wellbore storage coefficient, CDe2S, skin factor, interporosity flow coefficient, and storativity ratio have been estimated. The training pressure signals have been simulated using the analytical solution of the governing equations with varying noise percentages. The pressure drop and derivation of the noisy synthetic signals serve as the input signals to the intelligent scenario. The hyperparameters of the intelligent model have been carefully adjusted to improve its prediction performance. The trained classification model attained 99.48% and 99.32% accuracy over the training and testing datasets. The separately trained 15 regressors converged well to estimate the reservoir parameters. The model performance has been demonstrated with three uniquely simulated and real-field cases. The results indicate that the compiled prediction model can accurately identify the reservoir model and estimate the corresponding characteristics.

References

1.
Fan
,
C.
,
Li
,
H.
,
Qin
,
Q.
,
He
,
S.
, and
Zhong
,
C.
,
2020
, “
Geological Conditions and Exploration Potential of Shale Gas Reservoir in Wufeng and Longmaxi Formation of Southeastern Sichuan Basin, China
,”
J. Pet. Sci. Eng.
,
191
, p.
107138
.
2.
Dong
,
J.
,
Deng
,
R.
,
Quanying
,
Z.
,
Cai
,
J.
,
Ding
,
Y.
, and
Li
,
M.
,
2021
, “
Research on Recognition of Gas Saturation in Sandstone Reservoir Based on Capture Mode
,”
Appl. Radiat. Isot.
,
178
, p.
109939
.
3.
Wang
,
Y.
,
Cheng
,
H.
,
Hu
,
Q.
,
Liu
,
L.
,
Jia
,
L.
,
Gao
,
S.
, and
Wang
,
Y.
,
2022
, “
Pore Structure Heterogeneity of Wufeng–Longmaxi Shale, Sichuan Basin, China: Evidence From Gas Physisorption and Multifractal Geometries
,”
J. Pet. Sci. Eng.
,
208
, p.
109313
.
4.
Zhang
,
X.
,
Ma
,
F.
,
Yin
,
S.
,
Wallace
,
C. D.
,
Soltanian
,
M. R.
,
Dai
,
Z.
,
Ritzi
,
R. W.
,
Ma
,
Z.
,
Zhan
,
C.
, and
,
X.
,
2021
, “
Application of Upscaling Methods for Fluid Flow and Mass Transport in Multi-Scale Heterogeneous Media: A Critical Review
,”
Appl. Energy
,
303
, p.
117603
.
5.
Li
,
L.
,
Li
,
D.
,
Ma
,
J.
,
Wang
,
D.
, and
Tan
,
M.
,
2020
, “
A New Method for Calculating the Moduli of Mixed Minerals Under Abnormal Pressure Applying to the Marine Reservoir
,”
J. Coast. Res.
,
103
(
SI
), pp.
339
345
.
6.
Song
,
S.
,
Shi
,
B.
,
Yu
,
W.
,
Ding
,
L.
,
Liu
,
Y.
,
Li
,
W.
, and
Gong
,
J.
,
2020
, “
Study on the Optimization of Hydrate Management Strategies in Deepwater Gas Well Testing Operations
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
033002
.
7.
Moghimihanjani
,
M.
, and
Vaferi
,
B.
,
2021
, “
A Combined Wavelet Transform and Recurrent Neural Networks Scheme for Identification of Hydrocarbon Reservoir Systems From Well Testing Signals
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
013001
.
8.
Vaferi
,
B.
, and
Eslamloueyan
,
R.
,
2015
, “
Hydrocarbon Reservoirs Characterization by Co-Interpretation of Pressure and Flow Rate Data of the Multi-Rate Well Testing
,”
J. Pet. Sci. Eng.
,
135
, pp.
59
72
.
9.
Xing
,
C.
,
Yin
,
H.
,
Yuan
,
H.
,
Fu
,
J.
, and
Xu
,
G.
,
2022
, “
Pressure Transient Analysis for Fracture-Cavity Carbonate Reservoirs With Large-Scale Fractures–Caves in Series Connection
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
052901
.
10.
Chen
,
Y.
,
Zhang
,
Q.
,
Zhao
,
Z.
,
Li
,
C.
, and
Wang
,
B.
,
2022
, “
Semi-Analytical Model for the Transient Analysis of the Pressure in Vertically Fractured Wells in Reservoirs Considering the Influence of Natural Fractures
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
083005
.
11.
Vaferi
,
B.
,
Eslamloueyan
,
R.
, and
Ghaffarian
,
N.
,
2016
, “
Hydrocarbon Reservoir Model Detection From Pressure Transient Data Using Coupled Artificial Neural Network-Wavelet Transform Approach
,”
Appl. Soft Comput. J.
,
47
, pp.
63
75
.
12.
Zhang
,
X.
,
Ma
,
F.
,
Dai
,
Z.
,
Wang
,
J.
,
Chen
,
L.
,
Ling
,
H.
, and
Soltanian
,
M. R.
,
2022
, “
Radionuclide Transport in Multi-Scale Fractured Rocks: A Review
,”
J. Hazard. Mater.
,
424
, p.
127550
.
13.
Qin
,
J.
,
Xu
,
Y.
,
Tang
,
Y.
,
Liang
,
R.
,
Zhong
,
Q.
,
Yu
,
W.
, and
Sepehrnoori
,
K.
,
2022
, “
Impact of Complex Fracture Networks on Rate Transient Behavior of Wells in Unconventional Reservoirs Based on Embedded Discrete Fracture Model
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
083007
.
14.
Barenblatt
,
G. I.
,
Zheltov
,
I. P.
, and
Kochina
,
I. N.
,
1960
, “
Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks [Strata]
,”
J. Appl. Math. Mech.
,
24
(
5
), pp.
1286
1303
.
15.
Warren
,
J. E.
, and
Root
,
P. J.
,
1963
, “
The Behavior of Naturally Fractured Reservoirs
,”
Soc. Pet. Eng. J.
,
3
(
03
), pp.
245
255
.
16.
Abbasi
,
M.
,
Madani
,
M.
,
Sharifi
,
M.
, and
Kazemi
,
A.
,
2018
, “
Fluid Flow in Fractured Reservoirs: Exact Analytical Solution for Transient Dual Porosity Model With Variable Rock Matrix Block Size
,”
J. Pet. Sci. Eng.
,
164
, pp.
571
583
.
17.
Kuchuk
,
F.
, and
Biryukov
,
D.
,
2015
, “
Pressure Transient Tests and Flow Regimes in Fractured Reservoirs
,”
SPE Reserv. Eval. Eng.
,
18
(
2
), pp.
187
204
.
18.
Wang
,
S.
,
Ma
,
M.
,
Ding
,
W.
,
Lin
,
M.
, and
Chen
,
S.
,
2015
, “
Approximate Analytical-Pressure Studies on Dual-Porosity Reservoirs With Stress-Sensitive Permeability
,”
SPE Reserv. Eval. Eng.
,
18
(
4
), pp.
523
533
.
19.
Bourdet
,
D.
,
Whittle
,
T. M.
,
Douglas
,
A. A.
, and
Pirard
,
Y. M.
,
1983
, “
A New Set of Type Curves Simplifies Well Test Analysis
,”
World Oil
,
196
(
6
), pp.
95
106
.
20.
Liu
,
W.
,
Chen
,
Q.
,
Yang
,
J.
, and
Sun
,
Z.
,
1988
, “
Analysis of Pressure Transient Testing for Damaged Wells and Automatic Technique for Matching With Type Curves
,”
International Meeting on Petroleum Engineering
,
Society of Petroleum Engineers
,
Tianjin, China
.
21.
Bourdet
,
D.
, and
Gringarten
,
A. C.
,
1980
, “
Determination of Fissure Volume and Block Size in Fractured Reservoirs by Type-Curve Analysis
,”
SPE Annual Technical Conference and Exhibition
,
Society of Petroleum Engineers
, Dallas, TX,
Sept. 21–24
.
22.
Charandabi
,
S. E.
, and
Kamyar
,
K.
,
2021
, “
Prediction of Cryptocurrency Price Index Using Artificial Neural Networks: A Survey of the Literature
,”
Eur. J. Bus. Manage. Res.
,
6
(
6
), pp.
17
20
.
23.
Charandabi
,
S. E.
, and
Kamyar
,
K.
,
2021
, “
Using a Feed Forward Neural Network Algorithm to Predict Prices of Multiple Cryptocurrencies
,”
Eur. J. Bus. Manage. Res.
,
6
(
5
), pp.
15
19
.
24.
Rafiee
,
P.
, and
Mirjalily
,
G.
,
2020
, “
Distributed Network Coding-Aware Routing Protocol Incorporating Fuzzy-Logic-Based Forwarders in Wireless Ad Hoc Networks
,”
J. Netw. Syst. Manage.
,
28
(
4
), pp.
1279
1315
.
25.
Pandey
,
R. K.
,
Dahiya
,
A. K.
, and
Mandal
,
A.
,
2021
, “
Identifying Applications of Machine Learning and Data Analytics Based Approaches for Optimization of Upstream Petroleum Operations
,”
Energy Technol.
,
9
(
1
), p.
2000749
.
26.
Ahmed
,
A.
,
Elkatatny
,
S.
, and
Ali
,
A.
,
2021
, “
Fracture Pressure Prediction Using Surface Drilling Parameters by Artificial Intelligence Techniques
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
033201
.
27.
Al Dhaif
,
R.
,
Ibrahim
,
A. F.
, and
Elkatatny
,
S.
,
2022
, “
Prediction of Surface Oil Rates for Volatile Oil and Gas Condensate Reservoirs Using Artificial Intelligence Techniques
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
033001
.
28.
Siddig
,
O. M.
,
Al-Afnan
,
S. F.
,
Elkatatny
,
S. M.
, and
Abdulraheem
,
A.
,
2022
, “
Drilling Data-Based Approach to Build a Continuous Static Elastic Moduli Profile Utilizing Artificial Intelligence Techniques
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
023001
.
29.
Siddig
,
O.
,
Gamal
,
H.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2022
, “
Applying Different Artificial Intelligence Techniques in Dynamic Poisson’s Ratio Prediction Using Drilling Parameters
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
073006
.
30.
Rathod
,
U. H.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2022
, “
On the Application of Machine Learning in Savonius Wind Turbine Technology: An Estimation of Turbine Performance Using Artificial Neural Network and Genetic Expression Programming
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
061301
.
31.
Barua
,
J.
,
Horne
,
R. N.
,
Greenstadt
,
J. L.
, and
Lopez
,
L.
,
1988
, “
Improved Estimation Algorithms for Automated Type-Curve Analysis of Well Tests
,”
SPE Form. Eval.
,
3
(
1
), pp.
186
196
.
32.
Liu
,
Z.
,
Fang
,
L.
,
Jiang
,
D.
, and
Qu
,
R.
,
2022
, “
A Machine-Learning Based Fault Diagnosis Method With Adaptive Secondary Sampling for Multiphase Drive Systems
,”
IEEE Trans. Power Electron
.
33.
Jiang
,
Y.
,
Zhang
,
G.
,
Wang
,
J.
, and
Vaferi
,
B.
,
2021
, “
Hydrogen Solubility in Aromatic/Cyclic Compounds: Prediction by Different Machine Learning Techniques
,”
Int. J. Hydrogen Energy
,
46
(
46
), pp.
23591
23602
.
34.
Zhao
,
T.
,
Khan
,
M. I.
, and
Chu
,
Y.
,
2021
, “
Artificial Neural Networking (ANN) Analysis for Heat and Entropy Generation in Flow of Non-Newtonian Fluid Between Two Rotating Disks
,”
Math. Methods Appl. Sci.
, (
SI
).
35.
Karimi
,
M.
,
Vaferi
,
B.
,
Hosseini
,
S. H.
,
Olazar
,
M.
, and
Rashidi
,
S.
,
2020
, “
Smart Computing Approach for Design and Scale-Up of Conical Spouted Beds With Open-Sided Draft Tubes
,”
Particuology
,
55
, pp.
179
190
.
36.
Ghanbari
,
S.
, and
Vaferi
,
B.
,
2015
, “
Experimental and Theoretical Investigation of Water Removal From DMAZ Liquid Fuel by an Adsorption Process
,”
Acta Astronaut.
,
112
, pp.
19
28
.
37.
Mahmoodi
,
F.
,
Darvishi
,
P.
, and
Vaferi
,
B.
,
2018
, “
Prediction of Coefficients of the Langmuir Adsorption Isotherm Using Various Artificial Intelligence (AI) Techniques
,”
J. Iran. Chem. Soc.
,
15
(
12
), pp.
2747
2757
.
38.
Çolak
,
A. B.
,
2021
, “
A Novel Comparative Analysis Between the Experimental and Numeric Methods on Viscosity of Zirconium Oxide Nanofluid: Developing Optimal Artificial Neural Network and New Mathematical Model
,”
Powder Technol.
,
381
, pp.
338
351
.
39.
Cao
,
B.
,
Zhao
,
J.
,
Liu
,
X.
,
Arabas
,
J.
,
Tanveer
,
M.
,
Singh
,
A. K.
, and
Lv
,
Z.
,
2022
, “
Multiobjective Evolution of the Explainable Fuzzy Rough Neural Network With Gene Expression Programming
,”
IEEE Trans. Fuzzy Syst.
40.
Al-Kaabl
,
A.-A. U.
,
McVay
,
D. A.
, and
Lee
,
J. W.
,
1990
, “
Using an Expert System to Identify a Well-Test-Interpretation Model
,”
J. Pet. Technol.
,
42
(
5
), pp.
654
661
.
41.
Pandey
,
R. K.
,
Dahiya
,
A. K.
,
Pandey
,
A. K.
, and
Mandal
,
A.
,
2022
, “
Optimized Deep Learning Model Assisted Pressure Transient Analysis for Automatic Reservoir Characterization
,”
Pet. Sci. Technol.
,
40
(
6
), pp.
659
677
.
42.
Pandey
,
R. K.
,
Kumar
,
A.
, and
Ganju
,
R.
,
2021
, “
Sequential Modeling for Automatic Interpretation of Pressure Transient Test
,”
2021 Ninth International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)
,
IEEE
,
Noida, India
,
Sept. 3–4
.
43.
Ibrahim
,
A. F.
,
Elkatatny
,
S.
,
Abdelraouf
,
Y.
, and
Al Ramadan
,
M.
,
2022
, “
Application of Various Machine Learning Techniques in Predicting Water Saturation in Tight Gas Sandstone Formation
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
083009
.
44.
Roy
,
R.
, and
Gupta
,
A. K.
,
2022
, “
Recognition of Distributed Combustion Regime From Deep Learning
,”
ASME J. Energy Resour. Technol.
,
144
(
9
), p.
092303
.
45.
Lv
,
Z.
,
Li
,
Y.
,
Feng
,
H.
, and
Lv
,
H.
,
2021
, “
Deep Learning for Security in Digital Twins of Cooperative Intelligent Transportation Systems
,”
IEEE Trans. Intell. Transp. Syst.
, pp.
1
10
.
46.
Zhan
,
C.
,
Dai
,
Z.
,
Soltanian
,
M. R.
, and
Zhang
,
X.
,
2022
, “
Stage-Wise Stochastic Deep Learning Inversion Framework for Subsurface Sedimentary Structure Identification
,”
Geophys. Res. Lett.
,
49
(
1
), p.
e2021GL095823
.
47.
Tian
,
C.
, and
Horne
,
R. N.
,
2017
, “
Recurrent Neural Networks for Permanent Downhole Gauge Data Analysis
,”
SPE Annual Technical Conference and Exhibition
,
Society of Petroleum Engineers
,
San Antonio, TX,
Oct. 9–11
.
48.
Vaferi
,
B.
,
Eslamloueyan
,
R.
, and
Ayatollahi
,
S.
,
2015
, “
Application of Recurrent Networks to Classification of Oil Reservoir Models in Well-Testing Analysis
,”
Energy Sources A: Recovery Util. Environ. Eff.
,
37
(
2
), pp.
174
180
.
49.
Chu
,
H.
,
Liao
,
X.
,
Dong
,
P.
,
Chen
,
Z.
,
Zhao
,
X.
, and
Zou
,
J.
,
2019
, “
An Automatic Classification Method of Well Testing Plot Based on Convolutional Neural Network (CNN)
,”
Energies
,
12
(
15
), p.
2846
.
50.
Liu
,
X.
,
Li
,
D.
,
Yang
,
J.
,
Zha
,
W.
,
Zhou
,
Z.
,
Gao
,
L.
, and
Han
,
J.
,
2020
, “
Automatic Well Test Interpretation Based on Convolutional Neural Network for Infinite Reservoir
,”
J. Pet. Sci. Eng.
,
195
, p.
107618
.
51.
Daolun
,
L. I.
,
Xuliang
,
L. I. U.
,
Wenshu
,
Z. H. A.
,
Jinghai
,
Y.
, and
Detang
,
L. U.
,
2020
, “
Automatic Well Test Interpretation Based on Convolutional Neural Network for a Radial Composite Reservoir
,”
Pet. Explor. Dev.
,
47
(
3
), pp.
623
631
.
52.
Wang
,
S.
, and
Chen
,
S.
,
2019
, “
Application of the Long Short-Term Memory Networks for Well-Testing Data Interpretation in Tight Reservoirs
,”
J. Pet. Sci. Eng.
,
183
, p.
106391
.
53.
Pandey
,
R. K.
,
Kumar
,
A.
, and
Mandal
,
A.
,
2021
, “
A Robust Deep Structured Prediction Model for Petroleum Reservoir Characterization Using Pressure Transient Test Data
,”
Pet. Res
.
54.
Anraku
,
T.
,
1993
, “
Discrimination Between Reservoir Models in Well Test Analysis
,”
Ph.D. thesis
,
Stanford University
,
Stanford, CA
.
55.
Da Prat
,
G.
,
1990
,
Well Test Analysis for Fractured Reservoir Evaluation
,
Elsevier
,
New York
.
56.
Horne
,
R. N.
,
1995
,
Modern Well Test Analysis
,
Petroway Inc.
,
Palo Alto, CA
.
57.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.
58.
Wang
,
Y.
,
Wang
,
H.
,
Zhou
,
B.
, and
Fu
,
H.
,
2021
, “
Multi-Dimensional Prediction Method Based on Bi-LSTMC for Ship Roll
,”
Ocean Eng.
,
242
, p.
110106
.
59.
Marin
,
I.
,
Kuzmanic Skelin
,
A.
, and
Grujic
,
T.
,
2020
, “
Empirical Evaluation of the Effect of Optimization and Regularization Techniques on the Generalization Performance of Deep Convolutional Neural Network
,”
Appl. Sci.
,
10
(
21
), p.
7817
.
You do not currently have access to this content.