Abstract

The present study is focused on investigating experimentally and numerically the four versions of a concentric double tube solar collector with and without vacuum, and with and without a reflective solar film. The conservation equations were used to formulate the thermal model and treated numerically to develop a home-made numerical code in matlab. An experimental setup is constructed to test the four versions of the collector under outdoor conditions and hence validate both the thermal model and the numerical procedure. The tests were performed during the summer and autumn seasons. The numerical outcomes agreed well with the experiments showing a maximum error of about 2.1%. The results indicated that the vacuum effect is significant and enhanced the efficiency by about 13.6% in the presence of the reflective film. An average increase of 6.6% was found in the case of the collector without reflective film but with the vacuum. The reflective solar film increased the efficiency by about 4.3% for all cases with or without vacuum.

References

1.
IPCC
,
2021
, “
Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen]
,”
Cambridge University Press
(in press). https://www.ipcc.ch/meeting-doc/ipcc-wgi-14-and-ipcc-54/
2.
IEA
,
2021
, “
Global Energy Review 2021
,”
Glob. Energy Rev.
,
1
, pp.
1
36
.
3.
ONS
,
2021
, avaliação das condições de atendimento eletroenergético do sistema interligado nacional-estudo prospectivo julho a novembro de 2021, Rio de Janeiro.
4.
BRASIL
,
2021
, “
CMSE Amplia Possibilidade de Adoção de Medidas Excepcionais Diante Da Permanência de Condições Adversas de Atendimento—Português (Brasil)
,”
Ministério Minas e Energ
,
Brasilia
, https://www.gov.br/mme/pt-br/assuntos/noticias/cmse-amplia-possibilidade-de-adocao-de-medidas-excepcionais-diante-da-permanencia-de-condicoes-adversas-de-atendimento, Accessed September 6, 2021.
5.
BRASIL
,
2020
, “
Matriz Energética
,”
Empres. Pesqui. Energética
,
Brasilia
, https://www.epe.gov.br/pt/abcdenergia/matriz-energetica-e-eletrica, Accessed September 6, 2021.
6.
Sabiha
,
M. A.
,
Saidur
,
R.
,
Mekhilef
,
S.
, and
Mahian
,
O.
,
2015
, “
Progress and Latest Developments of Evacuated Tube Solar Collectors
,”
Renew. Sustain. Energy Rev.
,
51
, pp.
1038
1054
.
7.
IRENA
,
2018
, “Global Energy Transformation: A Roadmap to 2050.”
8.
Kumar
,
A.
,
Said
,
Z.
, and
Bellos
,
E.
,
2021
, “
An Up-to-Date Review on Evacuated Tube Solar Collectors
,”
J. Therm. Anal. Calorim.
,
145
(
6
), pp.
2873
2889
.
9.
Chowdhury
,
M. T.
, and
Mokheimer
,
E. M. A.
,
2021
, “
Energy and Exergy Performance Comparative Analysis of a Solar-Driven Organic Rankine Cycle Using Different Organic Fluids
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102107
.
10.
Pandya
,
B.
,
Kumar
,
V.
,
Patel
,
J.
, and
Matawala
,
V. K.
,
2018
, “
Optimum Heat Source Temperature and Performance Comparison of LiCl-H2O and LiBr-H2O Type Solar Cooling System
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
051204
.
11.
Soopee
,
A.
,
Khoodaruth
,
A. A. H.
,
Murdan
,
A. P.
, and
Oree
,
V.
,
2018
, “
Numerical Investigation of Thermal Separators Within the Evacuated Tubes of a Water-in-Glass Solar Water Heater
,”
ASME J. Sol. Energy Eng.
,
140
(
6
), p.
061014
.
12.
Meraj
,
M.
,
Khan
,
M. E.
, and
Azhar
,
M.
,
2020
, “
Performance Analyses of Photovoltaic Thermal Integrated Concentrator Collector Combined With Single Effect Absorption Cooling Cycle: Constant Flow Rate Mode
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
121305
.
13.
Dami
,
K. E.
,
Beltran-Chacon
,
R.
,
Islas
,
S.
, and
Leal-Chavez
,
D.
,
2021
, “
Numerical Simulation of Direct Solar Vapor Generation of Acetone for an Organic Rankine Cycle Using an Evacuated Tube Collector
,”
ASME J. Sol. Energy Eng.
,
143
(
2
), p.
021010
.
14.
Imponenti
,
L.
,
Shininger
,
R.
,
Gawlik
,
K.
,
Price
,
H.
, and
Zhu
,
G.
,
2020
, “
Controllable Solar Flux Heating for Freeze Recovery in Molten Salt Parabolic Trough Collectors
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
121301
.
15.
Farahbod
,
F.
, and
Farahmand
,
S.
,
2014
, “
Experimental Study of Solar-Powered Desalination Pond as Second Stage in Proposed Zero Discharge Desalination Process
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
031202
.
16.
Venkateshwar
,
K.
,
Siddique
,
A. R. M.
,
Tasnim
,
S.
,
Simha
,
H.
, and
Mahmud
,
S.
,
2021
, “
Thermoelectric Generator-Integrated Solar Air Heater: A Compact Passive System
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042102
.
17.
Zambolin
,
E.
, and
Del Col
,
D.
,
2010
, “
Experimental Analysis of Thermal Performance of Flat Plate and Evacuated Tube Solar Collectors in Stationary Standard and Daily Conditions
,”
Sol. Energy
,
84
(
8
), pp.
1382
1396
.
18.
Kotb
,
A.
,
Elsheniti
,
M. B.
, and
Elsamni
,
O. A.
,
2019
, “
Optimum Number and Arrangement of Evacuated-Tube Solar Collectors Under Various Operating Conditions
,”
Energy Convers. Manag.
,
199
(
9
), p.
112032
.
19.
Lopez-Nuñez
,
O. A.
,
Arturo Alfaro-Ayala
,
J.
,
Ramırez-Minguela
,
J. J.
,
Nicolas Flores-Balderas
,
J.
, and
Belman-Flores
,
J. M.
,
2019
, “
Solar Radiation Model Applied to a Low Temperature Evacuated Tubes Solar Collector
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031003
.
20.
Kabeel
,
A. E.
,
Khalil
,
A.
,
Elsayed
,
S. S.
, and
Alatyar
,
A. M.
,
2015
, “
Modified Mathematical Model for Evaluating the Performance of Water-in-Glass Evacuated Tube Solar Collector Considering Tube Shading Effect
,”
Energy
,
89
, pp.
24
34
.
21.
Jafarkazemi
,
F.
,
Ahmadifard
,
E.
, and
Abdi
,
H.
,
2016
, “
Energy and Exergy Efficiency of Heat Pipe Evacuated Tube Solar Collectors
,”
Therm. Sci.
,
20
(
1
), pp.
327
335
.
22.
Jowzi
,
M.
,
Veysi
,
F.
, and
Sadeghi
,
G.
,
2018
, “
Novel Experimental Approaches to Investigate Distribution of Solar Insolation Around the Tubes in Evacuated Tube Solar Collectors
,”
Renew. Energy
,
127
, pp.
724
732
.
23.
Sadeghi
,
G.
,
Najafzadeh
,
M.
, and
Safarzadeh
,
H.
,
2020
, “
Utilizing Gene-Expression Programming in Modelling the Thermal Performance of Evacuated Tube Solar Collectors
,”
J. Energy Storage
,
30
(
3
), p.
101546
.
24.
Janan
,
M. A.
,
Taqi
,
M.
, and
Chakir
,
H.
,
2021
, “
Impact of Gas-Filled Annular Space on Thermal and Optical Performances of a Heat Pipe Parabolic Trough Solar Collector
,”
ASME J. Sol. Energy Eng.
,
143
(
6
), p.
061001
.
25.
Papadimitratos
,
A.
,
Sobhansarbandi
,
S.
,
Pozdin
,
V.
,
Zakhidov
,
A.
, and
Hassanipour
,
F.
,
2016
, “
Evacuated Tube Solar Collectors Integrated with Phase Change Materials
,”
Sol. Energy
,
129
, pp.
10
19
.
26.
Essa
,
M. A.
,
Mostafa
,
N. H.
, and
Ibrahim
,
M. M.
,
2018
, “
An Experimental Investigation of the Phase Change Process Effects on the System Performance for the Evacuated Tube Solar Collectors Integrated With PCMs
,”
Energy Convers. Manag.
,
177
(
9
), pp.
1
10
.
27.
Aramesh
,
M.
, and
Shabani
,
B.
,
2020
, “
On the Integration of Phase Change Materials With Evacuated Tube Solar Thermal Collectors
,”
Renew. Sustain. Energy Rev.
,
132
(
7
), p.
110135
.
28.
Mehla
,
N.
,
Kumar
,
M.
, and
Yadav
,
A.
,
2020
, “
Annual Performance Evaluation of Evacuated Tube Solar Air Collector With Phase Change Material
,”
ASME J. Sol. Energy Eng.
,
142
(
3
), p.
031007
.
29.
Mahbubul
,
I. M.
,
Khan
,
M. M. A.
,
Ibrahim
,
N. I.
,
Ali
,
H. M.
,
Al-Sulaiman
,
F. A.
, and
Saidur
,
R.
,
2018
, “
Carbon Nanotube Nanofluid in Enhancing the Efficiency of Evacuated Tube Solar Collector
,”
Renew. Energy
,
121
, pp.
36
44
.
30.
Sharafeldin
,
M. A.
, and
Gróf
,
G.
,
2018
, “
Evacuated Tube Solar Collector Performance Using CeO2/Water Nanofluid
,”
J. Clean. Prod.
,
185
, pp.
347
356
.
31.
Sadeghi
,
G.
,
Safarzadeh
,
H.
, and
Ameri
,
M.
,
2019
, “
Experimental and Numerical Investigations on Performance of Evacuated Tube Solar Collectors With Parabolic Concentrator, Applying Synthesized Cu2O/Distilled Water Nanofluid
,”
Energy Sustain. Dev.
,
48
, pp.
88
106
.
32.
Kaya
,
H.
,
Eltugral
,
N.
,
Kurukavak
,
A.
, and
Arslan
,
K.
,
2019
, “
Efficiency Assessment of an Evacuated U-Tube Solar Collector Using Silver Nanofluid
,”
ASME J. Sol. Energy Eng.
,
141
(
6
), p.
061016
.
33.
Teles
,
M. d. P. R.
,
Ismail
,
K. A. R.
, and
Arabkoohsar
,
A.
,
2s019
, “
A New Version of a Low Concentration Evacuated Tube Solar Collector: Optical and Thermal Investigation
,”
Sol. Energy
,
180
, pp.
324
339
.
34.
Teles
,
M. P. R.
, and
Ismail
,
K. A. R.
,
2022
, “
Experimental and Numerical Assessments of the Effects of Vacuum and Solar Film on the Performance of Low Concentration Eccentric Solar Collector
,”
ASME J. Energy Resour. Technol.
,
144
(
9
), p.
091301
.
35.
Jowzi
,
M.
,
Veysi
,
F.
, and
Sadeghi
,
G.
,
2019
, “
Experimental and Numerical Investigations on the Thermal Performance of a Modified Evacuated Tube Solar Collector: Effect of the Bypass Tube
,”
Sol. Energy
,
183
(
3
), pp.
725
737
.
36.
Huang
,
X.
,
Wang
,
Q.
,
Yang
,
H.
,
Zhong
,
S.
,
Jiao
,
D.
,
Zhang
,
K.
,
Li
,
M.
, and
Pei
,
G.
,
2019
, “
Theoretical and Experimental Studies of Impacts of Heat Shields on Heat Pipe Evacuated Tube Solar Collector
,”
Renew. Energy
,
138
, pp.
999
1009
.
37.
Fathabadi
,
H.
,
2020
, “
Novel Low-Cost Parabolic Trough Solar Collector With TPCT Heat Pipe and Solar Tracker: Performance and Comparing With Commercial Flat-Plate and Evacuated Tube Solar Collectors
,”
Sol. Energy
,
195
(
2
), pp.
210
222
.
38.
Karlekar
,
B. V.
, and
Desmond
,
R. M.
,
1977
,
Engineering Heat Transfer
,
West Publishing Company
,
Saint Paul, MN
.
39.
Swinbank
,
W. C.
,
1963
, “
Long-Wave Radiation From Clear Skies
,”
Q. J. R. Meteorol. Soc.
,
89
(
381
), pp.
339
348
.
40.
Raithby
,
G.
, and
Hollands
,
K.
,
1975
, “
A General Method of Obtaining Approximate Solutions to Laminar and Turbulent Free Convection Problems
,”
Adv. Heat Transf.
,
11
, pp.
265
315
.
41.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corporation
,
New York
.
42.
Maliska
,
C. R.
,
2004
,
Transferência de Calor e Mecânica Dos Fluidos Computacional
,
LTC
,
Rio de Janeiro
.
43.
Kim
,
Y.
,
Han
,
G. Y.
, and
Seo
,
T.
,
2008
, “
An Evaluation on Thermal Performance of CPC Solar Collector
,”
Int. Commun. Heat Mass Transf.
,
35
(
4
), pp.
446
457
.
44.
Li
,
X.
,
Dai
,
Y. J.
,
Li
,
Y.
, and
Wang
,
R. Z.
,
2013
, “
Comparative Study on Two Novel Intermediate Temperature CPC Solar Collectors With the U-Shape Evacuated Tubular Absorber
,”
Sol. Energy
,
93
, pp.
220
234
.
45.
IEA
, “
Evolution of Solar PV Module Cost by Data Source, 1970-2020, IEA Paris
,” https://www.iea.org/data-and-statistics/charts/evolution-of-solar-pv-module-cost-by-data-source-1970-2020, Accessed April 6, 2022.
46.
Sadi
,
M.
,
Arabkoohsar
,
A.
, and
Joshi
,
A. K.
,
2021
, “
Techno-Economic Optimization and Improvement of Combined Solar-Powered Cooling System for Storage of Agricultural Products
,”
Sustain. Energy Technol. Assess.
,
45
(
1
), p.
101057
.
You do not currently have access to this content.