Abstract

The sonic data provide significant rock properties that are commonly used for designing the operational programs for drilling, rock fracturing, and development operations. The conventional methods for acquiring the rock sonic data in terms of compressional and shear slowness (ΔTc and ΔTs) are considered costly and time-consuming operations. The target of this paper is to propose machine learning models for predicting the sonic logs from the drilling data in real-time. Decision tree (DT) and random forest (RF) were employed as train-based algorithms for building the sonic prediction models for drilling complex lithology rocks that have limestone, sandstone, shale, and carbonate formations. The input data for the models include the surface drilling parameters to predict the shear and compressional slowness. The study employed data set of 2888 data points for building and testing the model, while another collected 2863 data set was utilized for further validation of the sonic models. Sensitivity investigations were performed for DT and RF models to confirm optimal accuracy. The correlation of coefficient (R) and average absolute percentage error (AAPE) were used to check the models’ accuracy between the actual values and models’ outputs, in addition to the sonic log profiles. The results indicated that the developed sonic models have a high capability for the sonic prediction from the drilling data as the DT model recorded R higher than 0.967 and AAPE less than 2.76% for ΔTc and ΔTs models, while RF showed R higher than 0.991 with AAPE less than 1.07%. The further validation process for the developed models indicated the great results for the sonic prediction and the RF model outperformed DT models as RF showed R higher than 0.986 with AAPE less than 1.12% while DT prediction recorded R greater than 0.93 with AAPE less than 1.95%. The sonic prediction through the developed models will save the cost and time for acquiring the sonic data through the conventional methods and will provide real-time estimation from the drilling parameters.

References

1.
Asquith
,
G.
, and
Gibson
,
C.
,
2004
,
Basic Well Log Analysis for Geologists
,
American Association of Petroleum Geologists
,
Tulsa, OK
.
2.
Chang
,
C.
,
Zoback
,
M. D.
, and
Khaksar
,
A.
,
2006
, “
Empirical Relations Between Rock Strength and Physical Properties in Sedimentary Rocks
,”
J. Pet. Sci. Eng.
,
51
(
3–4
), pp.
223
237
.
3.
Oloruntobi
,
O.
,
Adedigba
,
S.
,
Khan
,
F.
,
Chunduru
,
R.
, and
Butt
,
S.
,
2018
, “
Overpressure Prediction Using the Hydro-Rotary Specific Energy Concept
,”
J. Nat. Gas Sci. Eng.
,
55
, pp.
243
253
.
4.
Moore
,
W. R.
,
Zee Ma
,
Y.
,
Urdea
,
J.
, and
Bratton
,
T.
,
2011
, “
Uncertainty Analysis in Well-Log and Petrophysical Interpretations
,”
AAPG Mem.
,
96
, pp.
17
28
.
5.
Zee Ma
,
Y.
,
2011
, “
Uncertainty Analysis in Reservoir Characterization and Management: How Much Should We Know About What We Don’t Know?
,”
AAPG Mem.
,
96
, pp.
1
15
.
6.
Ellis
,
D.
,
2003
, “
Formation Porosity Estimation From Density Logs
,”
Petrophysics
,
44
(
5
), pp.
306
316
.
7.
Raymer
,
L. L.
,
Hunt
,
E. R.
, and
Gardner
,
J. S.
,
1980
, “
An Improved Sonic Transit Time-to-Porosity Transform
,”
SPWLA 21st Annual Logging Symposium
,
Lafayette, LA
,
July 8–11
, pp.
1
13
.
8.
Kane
,
J. A.
, and
Jennings
,
J. W.
,
2005
, “
A Method to Normalize Log Data by Calibration to Large-Scale Data Trends
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
October
, pp.
2291
2302
.
9.
Hamada
,
G. M.
,
2004
, “
Reservoir Fluids Identification Using Vp/Vs Ratio
,”
Oil Gas Sci. Technol.
,
59
(
6
), pp.
649
654
.
10.
Bailey
,
T.
,
2012
, “
An Empirical Vp/Vs Shale Trend for the Kimmeridge Clay of the Central North Sea
,”
74th EAGE Conference & Exhibition Incorporating SPE EUROPEC 2012
,
Copenhagen, Denmark
,
June
, pp.
4
7
.
11.
Eastwood
,
R. L.
, and
Castagna
,
J. P.
,
1983
, “
Basis for Interpretation of Vp/Vs Ratios in Complex Lithologies
,”
SPWLA 24th Annual Logging Symposium, (1974)
,
McAllen, TX
,
June 2–5
, pp.
1
17
.
12.
Onalo
,
D.
,
Adedigba
,
S.
,
Khan
,
F.
,
James
,
L. A.
, and
Butt
,
S. D.
,
2018
, “
Data Driven Model for Sonic Well Log Prediction
,”
J. Pet. Sci. Eng.
,
170
, pp.
1022
1037
.
13.
Hossain
,
Z.
,
Mukerji
,
T.
, and
Fabricius
,
I. L.
,
2012
, “
Vp–Vs Relationship and Amplitude Variation With Offset Modelling of Glauconitic Greensand
,”
Geophys. Prospect.
,
60
(
1
), pp.
117
137
.
14.
Potter
,
C. C.
, and
Foltinek
,
D. S.
,
1997
, “
Formation Elastic Parameters by Deriving S-Wave Velocity Logs
,”
Consortium for Research in Elastic Wave Exploration Seismology
, Vol.
9
, pp.
10/1
13
.
15.
Asoodeh
,
M.
, and
Bagheripour
,
P.
,
2012
, “
Prediction of Compressional, Shear, and Stoneley Wave Velocities From Conventional Well Log Data Using a Committee Machine With Intelligent Systems
,”
Rock Mech. Rock Eng.
,
45
(
1
), pp.
45
63
.
16.
Carroll
,
R. D.
,
1969
, “
The Determination of the Acoustic Parameters of Volcanic Rocks From Compressional Velocity Measurements
,”
Int. J. Rock Mech. Min. Sci.
,
6
(
6
), pp.
557
579
.
17.
Castagna
,
J. P.
,
Batzle
,
M. L.
, and
Eastwood
,
R. L.
,
1985
, “
Relationships Between Compressional-Wave and Shear-Wave Velocities in Clastic Silicate Rocks
,”
Geophysics
,
50
(
4
), pp.
571
581
.
18.
Brocher
,
T. M.
,
2005
, “
Empirical Relations Between Elastic Wavespeeds and Density in the Earth’s Crust
,”
Bull. Seismol. Soc. Am.
,
95
(
6
), pp.
2081
2092
.
19.
Eskandari
,
H.
,
Rezaee
,
M. R.
, and
Mohammadnia
,
M.
,
2004
, “
Application of Multiple Regression and Artificial Neural Network Techniques to Predict Shear Wave Velocity from Wireline Log Data for a Carbonate Reservoir, South-West Iran
,”
CSEG Recorder.
,
29
(
7
), pp.
42
48
.
20.
Augusto
,
F. D. O. A.
, and
Martins
,
J. L.
,
2009
, “
A Well-Log Regression Analysis for P-Wave Velocity Prediction in the Namorado Oil Field, Campos Basin
,”
Rev. Bras. Geofis.
,
27
(
4
), pp.
595
608
.
21.
Mohaghegh
,
S.
,
2000
, “
Virtual-Intelligence Applications in Petroleum Engineering: Part 1—Artificial Neural Networks
,”
J. Pet. Technol.
,
52
(
9
), pp.
64
73
.
22.
Gamal
,
H.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2020
, “
Rock Drillability Intelligent Prediction for a Complex Lithology Using Artificial Neural Network
,”
Abu Dhabi International Petroleum Exhibition & Conference 2020.
23.
Al-Abduljabbar
,
A.
,
Gamal
,
H.
, and
Elkatatny
,
S.
,
2020
, “
Application of Artificial Neural Network to Predict the Rate of Penetration for S-Shape Well Profile
,”
Arabian J. Geosci.
,
13
(
16
).
24.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Al-AbdulJabbar
,
A.
,
Moussa
,
T.
,
Gamal
,
H.
, and
Al Shehri
,
D.
,
2020
, “
Artificial Neural Networks Model for Prediction of the Rate of Penetration While Horizontally Drilling Carbonate Formations
,”
54th U.S. Rock Mechanics/Geomechanics Symposium
,
Golden, CO
,
June 28–July 1
.
25.
Ahmed
,
A.
,
Ali
,
A.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2019
, “
New Artificial Neural Networks Model for Predicting Rate of Penetration in Deep Shale Formation
,”
Sustainability
,
11
(
22
), p.
6527
.
26.
Elkatatny
,
S.
,
2019
, “
Real-Time Prediction of the Rheological Properties of Water-Based Drill-In Fluid Using Artificial Neural Networks
,”
Sustainability
,
11
(
18
), p.
5008
.
27.
Alsabaa
,
A.
,
Gamal
,
H.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2021
, “
New Correlations for Better Monitoring the All-Oil Mud Rheology by Employing Artificial Neural Networks
,”
Flow Meas. Instrum.
,
78
, p.
101914
.
28.
Alsabaa
,
A.
,
Gamal
,
H.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2020
, “
Real-Time Prediction of Rheological Properties of Invert Emulsion Mud Using Adaptive Neuro-Fuzzy Inference System
,”
Sensors
,
20
(
6
), p.
1669
.
29.
Alakbari
,
F. S.
,
Elkatatny
,
S.
, and
Baarimah
,
S. O.
,
2016
, “
Prediction of Bubble Point Pressure Using Artificial Intelligence AI Techniques
,”
SPE Middle East Artificial Lift Conference and Exhibition
,
Manama, Bahrain
,
Nov. 30–Dec. 1
, p.
9
.
30.
Mahdiani
,
M. R.
, and
Norouzi
,
M.
,
2018
, “
A New Heuristic Model for Estimating the Oil Formation Volume Factor
,”
Petroleum
,
4
(
3
), pp.
300
308
.
31.
Elkatatny
,
S.
,
Moussa
,
T.
,
Abdulraheem
,
A.
, and
Mahmoud
,
M.
,
2018
, “
A Self-Adaptive Artificial Intelligence Technique to Predict Oil Pressure Volume Temperature Properties
,”
Energies
,
11
(
12
), p.
3490
.
32.
Al Khalifah
,
H.
,
Glover
,
P. W. J.
, and
Lorinczi
,
P.
,
2020
, “
Permeability Prediction and Diagenesis in Tight Carbonates Using Machine Learning Techniques
,”
Mar. Pet. Geol.
,
112
, p.
104096
.
33.
Shokooh Saljooghi
,
B.
, and
Hezarkhani
,
A.
,
2015
, “
A New Approach to Improve Permeability Prediction of Petroleum Reservoirs Using Neural Network Adaptive Wavelet (Wavenet)
,”
J. Pet. Sci. Eng.
,
133
, pp.
851
861
.
34.
Elkatatny
,
S.
,
Tariq
,
Z.
,
Mahmoud
,
M.
,
Abdulazeez
,
A.
, and
Mohamed
,
I. M.
,
2016
, “
Application of Artificial Intelligent Techniques to Determine Sonic Time From Well Logs
,”
50th U.S. Rock Mechanics/Geomechanics Symposium
,
Houston, TX
,
June 26–29
, p.
11
.
35.
Gowida
,
A.
,
Elkatatny
,
S.
, and
Gamal
,
H.
,
2021
, “
Unconfined Compressive Strength (UCS) Prediction in Real-Time While Drilling Using Artificial Intelligence Tools
,”
Neural Comput. Appl.
,
7
.
36.
Anemangely
,
M.
,
Ramezanzadeh
,
A.
, and
Mohammadi Behboud
,
M.
,
2019
, “
Geomechanical Parameter Estimation From Mechanical Specific Energy Using Artificial Intelligence
,”
J. Pet. Sci. Eng.
,
175
, pp.
407
429
.
37.
Gamal
,
H.
,
Alsaihati
,
A.
,
Elkatatny
,
S.
,
Haidary
,
S.
, and
Abdulraheem
,
A.
,
2021
, “
Rock Strength Prediction in Real-Time While Drilling Employing Random Forest and Functional Network Techniques
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
093004
.
38.
Anemangely
,
M.
,
Ramezanzadeh
,
A.
, and
Tokhmechi
,
B.
,
2017
, “
Shear Wave Travel Time Estimation From Petrophysical Logs Using ANFIS-PSO Algorithm: A Case Study From Ab-Teymour Oilfield
,”
J. Nat. Gas Sci. Eng.
,
38
(
38
), pp.
373
387
.
39.
Anemangely
,
M.
,
Ramezanzadeh
,
A.
,
Amiri
,
H.
, and
Hoseinpour
,
S. A.
,
2019
, “
Machine Learning Technique for the Prediction of Shear Wave Velocity Using Petrophysical Logs
,”
J. Pet. Sci. Eng.
,
174
, pp.
306
327
.
40.
Gamal
,
H.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2020
, “
Effect of the Filtrate Fluid of Water-Based Mud on Sandstone Rock Strength and Elastic Moduli
,”
ACS Omega.
,
5
(
50
), pp.
32677
32688
.
41.
Alkinani
,
H. H.
,
Al-Hameedi
,
A. T. T.
,
Dunn-Norman
,
S.
,
Alsaba
,
M. T.
, and
Amer
,
A. S.
,
2019
, “
Review of the Applications of Decision Tree Analysis in Petroleum Engineering With a Rigorous Analysis
,”
SPE Middle East Oil and Gas Show (MEOS) Conference
,
Society of Petroleum Engineers (SPE)
.
42.
Li
,
X.
, and
Chan
,
C. W.
,
2010
, “
Application of an Enhanced Decision Tree Learning Approach for Prediction of Petroleum Production
,”
Eng. Appl. Artif. Intell.
,
23
(
1
), pp.
102
109
.
43.
Reddy
,
G. T.
,
Reddy
,
M. P. K.
,
Lakshmanna
,
K.
,
Kaluri
,
R.
,
Rajput
,
D. S.
,
Srivastava
,
G.
, and
Baker
,
T.
,
2020
, “
Analysis of Dimensionality Reduction Techniques on Big Data
,”
IEEE Access
,
8
, pp.
54776
54788
.
44.
Sun
,
D.
,
Lonbani
,
M.
,
Askarian
,
B.
,
Jahed Armaghani
,
D.
,
Tarinejad
,
R.
,
Thai Pham
,
B.
, and
Van Huynh
,
V.
,
2020
, “
Investigating the Applications of Machine Learning Techniques to Predict the Rock Brittleness Index
,”
Appl. Sci.
,
10
(
5
), p.
1691
.
45.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
46.
Ho
,
T. K.
,
1995
, “
Random Decision Forests
,”
Proceedings of the International Conference on Document Analysis and Recognition (ICDAR)
,
Montreal, Canada
,
Aug. 14–16
,
IEEE Computer Society
, pp.
278
282
.
47.
Kleinberg
,
E. M.
,
1996
, “
An Overtraining-Resistant Stochastic Modeling Method for Pattern Recognition
,”
Ann. Stat.
,
24
(
6
), pp.
2319
2349
.
48.
Kleinberg
,
E. M.
,
2000
, “
On the Algorithmic Implementation of Stochastic Discrimination
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
22
(
5
), pp.
473
490
.
49.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
,
2009
,
The Elements of Statistical Learning
,
Springer
,
New York
.
50.
Kim
,
Y.
,
Hardisty
,
R.
,
Torres
,
E.
, and
Marfurt
,
K. J.
,
2018
, “
Seismic Facies Classification Using Random Forest Algorithm
,”
2018 SEG International Exposition and Annual Meeting
,
Anaheim, CA
, p.
5
.
51.
Hegde
,
C.
,
Wallace
,
S.
, and
Gray
,
K.
,
2015
, “
Using Trees, Bagging, and Random Forests to Predict Rate of Penetration During Drilling
,”
SPE Middle East Intelligent Oil and Gas Conference and Exhibition
,
Abu Dhabi, UAE
,
Sept. 15–16
,
Society of Petroleum Engineers
.
52.
Nasir
,
E.
, and
Rickabaugh
,
C.
,
2018
, “
Optimizing Drilling Parameters Using a Random Forests ROP Model in the Permian Basin
,”
SPE Liquids-Rich Basins Conference—North America
,
Midland, TX
,
Sept. 5–6
, p.
13
.
53.
Sun
,
Y.
,
Ma
,
G.
,
Wang
,
L.
,
Zhang
,
F.
,
Li
,
X.
, and
Mei
,
L.
,
2019
, “
Organic-Matter Content Prediction Based on the Random Forest Algorithm: Application to a Lower Silurian Shale-Gas Reservoir
,”
SEG International Exposition and Annual Meeting
,
Houston, TX
,
Sept. 15–20
, p.
5
.
You do not currently have access to this content.