Abstract

One of the major challenges in the development of micro-combustors is heat losses that result in flame quenching, and reduced combustion efficiency and performance. In this work, a novel thermal barrier coating (TBC) using hexagonal boron nitride (h-BN) nanosheets as building blocks was developed and applied to a Swiss roll micro-combustor for determining its heat losses with increased temperatures inside the combustor that contributes to improved performance. It was found that by using the h-BN TBC, the combustion temperature of the micro-combustor increased from 850 K to 970 K under the same thermal loading and operational conditions. This remarkable temperature increase using the BN TBC originated from its low cross-plane thermal conductivity of 0.4 W m−1 K−1to mitigate the heat loss from the micro-combustor plates. Such a low thermal conductivity in the h-BN TBC is attributed to its interfacial resistance between the nanosheets. The development of h-BN TBC provides an effective approach to improve thermal management for performance improvements of gas turbine engines, rocket engines, and all various kinds of micro-combustors.

References

1.
Vijayan
,
V.
, and
Gupta
,
A. K.
,
2010
, “
Combustion and Heat Transfer at Meso-Scale With Thermal Recuperation
,”
Appl. Energy
,
87
(
4
), pp.
2628
2639
.
2.
Shirsat
,
V.
, and
Gupta
,
A. K.
,
2011
, “
A Review of Progress in Heat Recirculating Meso-Scale Combustors
,”
Appl. Energy
,
88
(
12
), pp.
4294
4309
.
3.
Maruta
,
K.
,
2011
, “
Micro and Mesoscale Combustion
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
125
150
.
4.
Fernandez-Pello
,
A. C.
,
2003
, “
Micropower Generation Using Combustion: Issues and Approaches
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
883
899
.
5.
Vetter
,
R.
,
Yang
,
V.
,
Wang
,
Z.
,
Wang
,
V.
,
Milius
,
D.
, and
Peluse
,
M.
,
2003
, “
Development of Meso and Micro Scale Liquid Propellant Thrusters
,”
AIAA-2003-676
.
6.
Aghalayam
,
P.
,
Bui
,
P. A.
, and
Vlachos
,
D. G.
,
1998
, “
The Role of Radical Wall Quenching in Flame Stability and Wall Heat Flux: Hydrogen-Air Mixtures
,”
Combust. Theory Modell.
,
2
(
4
), pp.
515
530
.
7.
Miller
,
R. A.
,
1997
, “
Thermal Barrier Coatings for Aircraft Engines: History and Directions
,”
J. Therm. Spray Technol.
,
6
(
1
), pp.
35
42
.
8.
Padture
,
N. P.
,
Gell
,
M.
, and
Jordan
,
E. H.
,
2002
, “
Materials Science—Thermal Barrier Coatings for Gas-Turbine Engine Applications
,”
Science
,
296
(
5566
), pp.
280
284
.
9.
Levi
,
C. G.
,
2004
, “
Emerging Materials and Processes for Thermal Barrier Systems
,”
Curr. Opin. Solid State Mater. Sci.
,
8
(
1
), pp.
77
91
.
10.
Zhu
,
H.
,
Li
,
Y.
,
Fang
,
Z.
,
Xu
,
J.
,
Cao
,
F.
,
Wan
,
J.
,
Preston
,
C.
,
Yang
,
B.
, and
Hu
,
L.
,
2014
, “
Highly Thermally Conductive Papers With Percolative Layered Boron Nitride Nanosheets
,”
ACS Nano
,
8
(
4
), pp.
3606
3613
.
11.
Beiss
,
P.
,
Ruthardt
,
R.
, and
Warlimont
,
H.
,
2002
,
Powder Metallurgy Data. Refractory, Hard and Intermetallic Materials
,
Springer
,
New York
.
12.
Luo
,
W.
,
Zhou
,
L.
,
Yang
,
Z.
,
Dai
,
J.
,
Hitz
,
E.
,
Kuang
,
Y.
,
Han
,
X.
,
Yang
,
B.
, and
Hu
,
L.
,
2017
, “
Protection of Boron Nitride Nanosheets by Atomic Layer Deposition Toward Thermal Energy Management Applications
,”
Nano Energy
,
40
(
1
), pp.
149
154
.
13.
Zheng
,
J.-C.
,
Zhang
,
L.
,
Kretinin
,
A. V.
,
Morozov
,
S. V.
,
Wang
,
Y. B.
,
Wang
,
T.
,
Li
,
X.
, et al
,
2016
, “
High Thermal Conductivity Hexagonal Boron Nitride Laminates
,”
2D Materials
,
3
(
1
), p.
011004
.
14.
Chen
,
G.
,
Borca-Tasciuc
,
T.
,
Yang
,
B.
,
Song
,
D.
,
Liu
,
W. L.
,
Zeng
,
T.
, and
Achimov
,
D.
,
1999
, “
Heat Conduction Mechanisms and Phonon Engineering in Superlattice Structures
,”
Therm. Sci. Eng.
,
7
(
1
), pp.
43
51
.
15.
Jiang
,
P.
,
Qian
,
X.
, and
Yang
,
R.
,
2017
, “
Time-Domain Thermoreflectance (TDTR) Measurements of Anisotropic Thermal Conductivity Using a Variable Spot Size Approach
,”
Rev. Sci. Instrum.
,
88
(
7
), p.
074901
.
16.
Feser
,
J.
, and
Gupta
,
A. K.
,
2021
, “
Performance and Emissions of Drop-In Aviation Biofuels in a Lab Scale Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042103
.
17.
Singh
,
P.
,
Chuhan
,
S. R.
,
Goel
,
V.
, and
Gupta
,
A. K.
,
2019
, “
Impact of Biodiesel Blend on Lubricating Oil Degradation in a Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032203
.
18.
Scenna
,
R.
, and
Gupta
,
A. K.
,
2018
, “
The Influence of the Distributed Reaction Regime on Fuel Reforming Conditions
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
122002
.
19.
Said
,
A. O.
,
Khalil
,
A. E.
, and
Gupta
,
A. K.
,
2016
, “
Dual Location Fuel Injection Effects on Emissions and NO/OH Chemiluminescence in a High Intensity Combustor
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042208
.
20.
Said
,
A. O.
, and
Gupta
,
A. K.
,
2015
, “
Oxygen Enriched Air Effects on Combustion, Emission and Distributed Reaction
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042203
.
21.
Kekec
,
K. B.
,
Karyeyen
,
S.
, and
Ilbas
,
M.
,
2022
, “
Colorless Distributed Combustion of Diffusion Methane Flame Using Two Cyclone Burners
,”
Int. J. Energy Clean Environ.
,
23
(
1
), pp.
1
17
.
You do not currently have access to this content.