Abstract

Carbonate acidization is the process of creating wormholes by injecting acid to increase reservoir permeability and oil production. Nevertheless, some reservoir oils are problematic with low asphaltene stability, which affects the wormholing process. The interactions between acid, rock, and asphaltene lead to acid-asphaltene sludge formation, which reduces oil productivity and acid injectivity. Neglecting this sludge formation leads to over predicting the depth of the wormhole penetration. Therefore, a numerical model was developed in this study to provide a better understanding of acid-asphaltene sludge formation effect on wormhole creation and propagation in carbonates. A one-dimensional radial model was developed by coupling fluid flow equations in porous media with asphaltene deposition and acid-asphaltene reactions. Then, the developed model was validated and utilized to investigate the effects of different parameters on wormholing including asphaltene presence, acid injection volume and concentration, formation temperature and porosity, and asphaltene concentration. Results showed that acid injection in carbonates with asphaltenic oils reduce wormhole penetration from 40% to total pore blockage as opposed to reservoirs without asphaltene deposition. The findings also highlighted that shallow wormhole penetration is more pronounced with a high volume of acid injection, high porous formations, less diluted acid, and a high concentration of asphaltene. In addition, there is an optimum acid injection volume at which wormhole penetration is high and its infiltration is deep into the formation. This is the first work to discuss modeling of acid-asphaltene sludge formation and subsequent wormhole development in carbonates, which is particularly important for problematic crude oils.

References

1.
Economides
,
M. J.
,
Hill
,
A. D.
, and
Ehlig-Economides
,
Z. D.
,
2013
,
Petroleum Production Systems
,
Pearson Education
.
2.
Khurshid
,
I.
, and
Choe
,
J.
,
2015
, “
Analysis of Asphaltene Deposition, Carbonate Precipitation, and Their Cementation in Depleted Reservoirs During CO2 Injection
,”
Greenhouse Gases: Sci. Technol.
,
5
(
1
), pp.
1
11
.
3.
Khurshid
,
I.
,
2014
, “
CO2-Enhanced Oil Recovery Based on Reservoir Compaction, Production Optimization and Formation Damage
,”
Ph.D. dissertation
,
Seoul National University
,
Seoul, South Korea
.
4.
Islam
,
A.
,
Sun
,
A.
, and
Lu
,
J.
,
2016
, “
Simulating In-Zone Chemistry Changes From Injection Time to Longer Periods of CO2 Storage
,”
Environ. Earth Sci.
,
75
(
20
), p.
1346
.
5.
Khurshid
,
I.
,
Al-Shalabi
,
E. W.
,
Al-Attar
,
H.
, and
Alneaimi
,
A. K.
,
2020
, “
Analysis of Fracture Choking due to Asphaltene Deposition in Fractured Reservoirs and Its Effect on Productivity
,”
J. Petrol. Explor. Prod. Technol.
,
10
(
8
), pp.
3377
3387
.
6.
Khurshid
,
I.
, and
Fujii
,
Y.
,
2021
, “
Geomechanical Analysis of Formation Deformation and Permeability Enhancement Due to Low-Temperature CO2 Injection in Subsurface oil Reservoirs
,”
J. Petrol. Explor. Prod. Technol.
,
11
(
4
), pp.
1915
1923
.
7.
Na
,
J.
,
Xu
,
T.
,
Jiang
,
Z.
,
Bao
,
X.
,
Yongdong
,
W.
, and
Feng
,
B.
,
2016
, “
A Study on the Interaction of Mud Acid with Rock for Chemical Stimulation in an Enhanced Geothermal System
,”
Environ. Earth Sci.
,
75
, pp.
1
13
.
8.
Al-Shalabi
,
E. W.
, and
Sepehrnoori
,
K.
,
2017
,
Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs
,
Gulf Professional Publishing, Elsevier, First Edition
,
Cambridge, MA
.
9.
Vikram
,
R.
, and
Rob
,
K.
,
2017
,
“Sustainable Shale Oil and Gas”. Chapter 6-Potential for Liquid Contamination of Groundwater, Sustainable Shale Oil and Gas
,
Elsevier
,
New York
.
10.
Ejeh
,
C.
,
Afgan
,
I.
,
AlMansob
,
H.
,
Brantson
,
E.
,
Fekala
,
J.
,
Odiator
,
M.
,
Stanley
,
P.
,
Anumah
,
P.
,
Onyekperem
,
C.
, and
Boah
,
E.
,
2020
, “
Computational Fluid Dynamics for Ameliorating Oil Recovery Using Silicon-Based Nanofluids and Ethanol in Oil-Wet Reservoirs
,”
Energy Rep.
,
6
, pp.
3023
3035
.
11.
Daccord
,
G.
,
Lenormand
,
R.
, and
Lietard
,
O.
,
1993
, “
Chemical Dissolution of a Porous Medium by a Reactive Fluid—I. Model for the Wormholing Phenomenon
,”
Chem. Eng. Sci.
,
48
(
1
), pp.
169
178
.
12.
Economides
,
M. J.
,
Hill
,
A. D.
, and
Ehlig-Economides
,
C.
,
2008
,
Petroleum Production Systems
,
PTR Prentice Hall
.
13.
Afgan
,
I.
,
Moulinec
,
C.
, and
Laurence
,
D.
,
2008
, “
Numerical Simulation of Generic Side Mirror of a car Using Large Eddy Simulation With Polyhedral Meshes
,”
Int. J. Num. Meth. Flu.
,
56
(
8
), pp.
1107
1113
.
14.
Filippone
,
A.
, and
Afgan
,
I.
,
2008
, “
Orthogonal Blade-Vortex Interaction on a Helicopter Tail Rotor
,”
AIAA J.
,
46
(
6
), pp.
1476
1489
.
15.
Guleren
,
K. M.
,
Afgan
,
I.
, and
Turan
,
A.
,
2010
, “
Predictions of Turbulent Flow for the Impeller of a NASA Low-Speed Centrifugal Compressor
,”
ASME J. Turbomach.
,
132
(
2
), p.
021005
.
16.
Han
,
X.
,
Sagaut
,
P.
,
Lucor
,
D.
, and
Afgan
,
I.
,
2012
, “
Stochastic Response of the Laminar Flow Past a Flat Plate Under Uncertain Inflow Conditions
,”
Int. J. Comput. Fluid Dynam.
,
26
(
2
), pp.
101
117
.
17.
Afgan
,
I.
,
Benhamadouche
,
S.
,
Han
,
X.
,
Sagaut
,
P.
, and
Laurence
,
D.
,
2013
, “
Flow Over a Flat Plate With Uniform Inlet and Incident Coherent Gusts
,”
J. Fluid Mech.
,
720
, pp.
457
485
.
18.
Wu
,
Z.
,
Laurence
,
D.
, and
Afgan
,
I.
,
2017
, “
Direct Numerical Simulation of a low Momentum Round jet in Channel Crossflow
,”
Nucl. Eng. Design.
,
313
, pp.
273
284
.
19.
Wu
,
Z.
,
Laurence
,
D.
,
Iacovides
,
H.
, and
Afgan
,
I.
,
2017
, “
Direct Simulation of Conjugate Heat Transfer of jet in Channel Crossflow
,”
Int. J. Heat Mass Transf.
,
110
, pp.
193
208
.
20.
Abed
,
N.
, and
Afgan
,
I.
,
2017
, “
A CFD Study of Flow Quantities and Heat Transfer by Changing a Vertical to Diameter Ratio and Horizontal to Diameter Ratio in Inline Tube Banks Using URANS Turbulence Models
,”
Int. Commun., Heat Mass Transf.
,
89
, pp.
18
30
.
21.
Kahil
,
Y.
,
Benhamadouche
,
S.
,
Berrouk
,
A. S.
, and
Afgan
,
I.
,
2019
, “
Simulation of Subcritical-Reynolds-Number Flow Around Four Cylinders in Square Arrangement Configuration Using LES
,”
Euro. J. Mech.-B/Fluid
,
74
, pp.
111
122
.
22.
Wu
,
Z.
,
Laurence
,
D.
,
Utyuzhnikov
,
S.
, and
Afgan
,
I.
,
2019
, “
Proper Orthogonal Decomposition and Dynamic Mode Decomposition of jet in Channel Crossflow
,”
Nucl. Eng. Design.
,
344
, pp.
54
68
.
23.
Nguyen
,
P. T. L.
,
Uribe
,
J. C.
,
Afgan
,
I.
, and
Laurence
,
D. R.
,
2020
, “
A Dual-Grid Hybrid RANS/LES Model for Under-Resolved Near-Wall Regions and its Application to Heated and Separating Flows
,”
Flow Turbul. Comb.
,
104
(
4
), pp.
835
859
.
24.
Benhamadouche
,
S.
,
Afgan
,
I.
, and
Manceau
,
R.
,
2020
, “
Numerical Simulations of Flow and Heat Transfer in a Wall-Bounded pin Matrix
,”
Flow Turbul. Comb.
,
104
(
1
), pp.
19
44
.
25.
Abed
,
N.
,
Afgan
,
I.
,
Cioncolini
,
A.
,
Iacovides
,
H.
, and
Nasser
,
A.
,
2020
, “
Assessment and Evaluation of the Thermal Performance of Various Working Fluids in Parabolic Trough Collectors of Solar Thermal Power Plants Under Non-Uniform Heat Flux
,”
Energies
,
13
(
15
), p.
3776
.
26.
Revell
,
A.
,
Afgan
,
I.
,
Ali
,
A.
,
Santasmasas
,
M.
,
Craft
,
T.
,
de Rosis
,
A.
, and
Holgate
,
J.
,
2020
, “
Coupled Hybrid RANS-LES Research at the University of Manchester
,”
ERCOFTAC Bull.
,
120
, p.
67
.
27.
Abed
,
N.
, and
Afgan
,
I.
,
2020
, “
An Extensive Review of Various Technologies for Enhancing the Thermal and Optical Performances of Parabolic Trough Collectors
,”
Int. J. Energy Res.
,
44
(
7
), pp.
5117
5164
.
28.
Abed
,
N.
,
Afgan
,
I.
,
Cioncolini
,
A.
,
Iacovides
,
H.
,
Nasser
,
A.
, and
Mekhail
,
T.
,
2020
, “
Thermal Performance Evaluation of Various Nanofluids With Non-Uniform Heating for Parabolic Trough Collectors
,”
Case Studies Therm. Eng.
,
22
, p.
100769
.
29.
Ahmed
,
U.
,
Apsley
,
D.
,
Stallard
,
T.
,
Stansby
,
P.
, and
Afgan
,
I.
,
2021
, “
Turbulent Length Scales and Budgets of Reynolds Stress-Transport for Open-Channel Flows; Friction Reynolds Numbers Reτ = 150, 400 and 1020
,”
J. Hydr. Res.
,
59
(
1
), pp.
36
50
.
30.
Abed
,
N.
,
Afgan
,
I.
,
Iacovides
,
H.
,
Cioncolini
,
A.
,
Khurshid
,
I.
, and
Nasser
,
A.
,
2021
, “
Thermal-Hydraulic Analysis of Parabolic Trough Collectors Using Straight Conical Strip Inserts With Nanofluids
,”
Nanomaterials
,
11
(
4
), p.
853
.
31.
Ali
,
A. E. A.
,
Afgan
,
I.
,
Laurence
,
D.
, and
Revell
,
A.
,
2021
, “
A Dual-Mesh Hybrid RANS-LES Simulation of the Buoyant Flow in a Differentially Heated Square Cavity With an Improved Resolution Criterion
,”
Comput. Fluids
,
224
(
30
), p.
104949
.
32.
Hung
,
K. M.
,
Hill
,
A. D.
, and
Sepehrnoori
,
K. A.
,
1989
, “
Mechanistic Model of Wormhole Growth in Carbonate Matrix Acidizing and Acid Fracturing
,”
SPE J. Petrol. Technol.
,
41
(
1
), pp.
59
66
.
33.
Fredd
,
C. N.
, and
Fogler
,
H. S.
,
1998
, “
Influence of Transport and Reaction on Wormhole Formation in Porous Media
,”
AIChE J.
,
44
(
9
), pp.
1933
1949
.
34.
Kalia
,
N.
, and
Balakotaiah
,
V.
,
2007
, “
Modeling and Analysis of Wormhole Formation in Reactive Dissolution of Carbonate Rocks
,”
Chem. Eng. Sci.
,
62
(
4
), pp.
919
928
.
35.
Babaei
,
M.
, and
Sedighi
,
M.
,
2018
, “
Impact of Phase Saturation on Wormhole Formation in Rock Matrix Acidizing
,”
Chem. Eng. Sci.
,
177
(
23
), pp.
39
52
.
36.
Dong
,
K.
,
Zhu
,
D.
, and
Hill
,
A. D.
,
2018
, “
Mechanism of Wormholing and its Optimal Conditions: A Fundamental Explanation
,”
J. Petrol. Sci. Eng.
,
169
, pp.
126
134
.
37.
Buijse
,
M. A.
, and
Glasbergen
,
G.
,
2005
, “
A Semiempirical Model to Calculate Wormhole Growth in Carbonate Acidizing
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX,
Paper SPE 96892.
38.
Furui
,
K.
,
Burton
,
R. C.
,
Burkhead
,
D. W.
,
Abdelmalek
,
N. A.
,
Hill
,
A. D.
,
Zhu
,
D.
, and
Nozaki
,
M.
,
2012
, “
A Comprehensive Model of High-Rate Matrix-Acid Stimulation for Long Horizontal Wells in Carbonate Reservoirs: Part I-Scaling up Core-Level Acid Wormholing to Field Treatments
,”
SPE J.
,
17
(
1
), pp.
271
279
.
39.
Ali
,
M. T.
, and
Nasr-El-Din
,
H. A.
,
2019
, “
A Robust Model to Simulate Dolomite-Matrix Acidizing
,”
SPE Prod. Oper.
,
34
, pp.
109
129
.
40.
Ali
,
M. T.
, and
Nasr-El-Din
,
H. A.
,
2020
, “
New Insights Into Carbonate Matrix Acidizing Treatments: A Mathematical and Experimental Study
,”
SPE J.
,
25
(
03
), pp.
1272
1284
.
41.
Abdollahi
,
R.
,
Shadizadeh
,
S. R.
, and
Zargar
,
G.
,
2014
, “
Experimental Investigation of Acid-Induced Sludge Precipitation Using Acid Additives in Iran
,”
Energy Sources Part A
,
36
(
16
), pp.
1793
1799
.
42.
Tabzar
,
A.
,
Fathinasab
,
M.
,
Salehi
,
A.
,
Bahrami
,
B.
, and
Mohammadi
,
A. H.
,
2018
, “
Multiphase Flow Modeling of Asphaltene Precipitation and Deposition
,”
Oil Gas Sci. Technol. Rev. IFP Energies Nouvelles
,
73
, p.
51
.
43.
Shukla
,
S.
,
Zhu
,
D.
, and
Hill
,
A. D.
,
2006
, “
The Effect of Phase Saturation Conditions on Wormhole Propagation in Carbonate Acidizing
,”
SPE J.
,
11
(
03
), pp.
273
281
.
44.
Liu
,
M.
,
Zhang
,
S.
,
Mou
,
J.
, and
Zhou
,
F.
,
2013
, “
Wormhole Propagation Behavior Under Reservoir Condition in Carbonate Acidizing. Transport
,”
Porous Med.
,
96
(
1
), pp.
203
220
.
45.
Ghommem
,
M.
,
Zhao
,
W.
,
Dyer
,
S.
,
Qiu
,
X.
, and
Brady
,
D.
,
2015
, “
Carbonate Acidizing: Modeling, Analysis, and Characterization of Wormhole Formation and Propagation
,”
J. Petrol. Sci. Eng.
,
131
, pp.
18
33
.
46.
Houchin
,
L. R.
,
Dunlap
,
D. D.
,
Arnold
,
B. D.
, and
Domke
,
K. M.
,
1990
, “
The Occurrence and Control of Acid-Induced Asphaltene Sludge
,”
SPE Formation Damage Control Symposium
,
Lafayette, LA
, Paper SPE 19419.
47.
Kumar
,
R.
,
He
,
J.
, and
Nasr-El-Din
,
H.
,
2014
, “
New Insights on the Effect of Oil Saturation on the Optimal Acid-Injection Rate in Carbonate Acidizing
,”
SPE Improved Oil Recovery Symposium
,
Tulsa, OK,
Paper SPE 169134.
48.
AlMubarak
,
T.
,
AlKhaldi
,
M.
,
AlMubarak
,
M.
,
Rafie
,
M.
,
Al-Ibrahim
,
H.
, and
AlBokhari
,
N.
,
2015
, “
Investigation of Acid-Induced Emulsion and Asphaltene Precipitation in Low Permeability Carbonate Reservoirs
,”
SPE Saudi Arabia Section Annual Technical Symposium and Exhibition
,
Al-Khobar, Saudi Arabia
, Paper SPE 178034.
49.
Rietjens
,
M.
, and
Van Haasterecht
,
M.
,
2003
, “
Phase Transport of HCl, HFeCl4, Water, and Crude Oil Components in Acid–Crude Oil Systems
,”
J. Colloid Interface Sci.
,
268
(
2
), pp.
489
500
.
50.
Alrashidi
,
H.
,
Ibrahim
,
A. F.
, and
Nasr-El-Din
,
H. A.
,
2018
, “
Bio-Oil Dispersants Effectiveness on Asphaltene Sludge During Carbonate Acidizing Treatment
,”
SPE Trinidad and Tobago Section Energy Resources Conference
,
Port of Spain, Trinidad and Tobago,
Paper SPE 191165.
51.
Mullins
,
O. C.
,
Sheu
,
E. Y.
,
Hammam
,
I. A.
, and
Marshall
,
A. G.
,
2007
,
Asphaltenes, Heavy Oils, and Petroelomics
,
Springer
,
New York
.
52.
Yonebayashi
,
H.
,
Al Mutairi
,
A. M.
,
Al Habshi
,
A. M.
, and
Urasaki
,
D.
,
2011
, “
Dynamic Asphaltene Behavior for Gas-Injection Risk Analysis
,”
SPE Res. Eval. Eng. J.
,
14
(
4
), pp.
493
504
.
53.
Gruesbeck
,
C.
, and
Collins
,
R. E.
,
1982
, “
Entrainment of Deposition of Fine Particles in Porous Media
,”
SPE J.
,
22
(
6
), pp.
847
856
.
54.
Wang
,
S.
, and
Civan
,
F.
,
2001
, “
Productivity Decline of Vertical and Horizontal Wells by Asphaltene Deposition in Petroleum Reservoirs
,”
SPE International Symposium on Oilfield Chemistry
,
Houston, TX,
Paper SPE 64991.
55.
Mehana
,
M.
,
Abraham
,
J.
, and
Fahes
,
M.
,
2019
, “
The Impact of Asphaltene Deposition on Fluid Flow in Sandstone
,”
J. Petrol. Sci. Eng.
,
174
, pp.
676
681
.
56.
Afra
,
S.
,
Samouei
,
H.
,
Golshahi
,
N.
, and
Nasr-El-Din
,
H.
,
2020
, “
Alterations of Asphaltene Chemical Structure due to Carbon Dioxide Injection
,”
Fuel
,
272
, p.
117708
.
57.
Soulgani
,
B. S.
,
Tohidi
,
B.
,
Jamialahmadi
,
M.
, and
Rashtchian
,
D.
,
2011
, “
Modeling Formation Damage due to Asphaltene Deposition in the Porous Media
,”
Energy Fuels
,
25
(
6
), pp.
753
761
.
58.
Almehaideb
,
R. A.
,
2004
, “
Asphaltene Precipitation and Deposition in the Near Wellbore Region: a Modeling Approach
,”
J. Petrol. Sci. Eng.
,
42
(
2–4
), pp.
157
170
.
59.
Yaseen
,
S.
, and
Mansoori
,
G. A.
,
2018
, “
Asphaltene Aggregation due to Waterflooding (A Molecular Dynamics Study)
,”
J. Petrol. Sci. Eng.
,
170
, pp.
177
183
.
60.
Khurshid
,
I.
, and
Choe
,
J.
,
2018
, “
Analysis of Thermal Disturbance and Formation Damage During CO2 Injection in Shallow and Deep Reservoirs
,”
Int. J. Oil Gas Coal Technol.
,
11
(
2
), pp.
141
153
.
61.
Bagheri
,
M. B.
,
Kharrat
,
R.
, and
Ghotby
,
C.
,
2011
, “
Experimental Investigation of the Asphaltene Deposition Process During Different Production Schemes
,”
Oil Gas Sci. Technol.
,
66
(
3
), pp.
507
519
.
62.
Civan
,
F.
,
2016
,
“Reservoir Formation Damage Fundamentals, Modeling, Assessment, and Mitigation”. Third Edition
,
Gulf Publishing Company
,
Houston, TX
.
You do not currently have access to this content.