Abstract

The clogging phenomenon often occurs during the reinjection of produced water due to the suspended particles, which will deteriorate the development efficiency. Many experimental and analytical methods have been introduced to solve this problem; however, few numerical approaches have been proposed to investigate the particle migration in the produced water reinjection process. Moreover, it is hard to obtain a clear understanding directly from the particle scale when the injected particles have different sizes. This paper employs a coupled lattice Boltzmann method and discrete element method (LBM-DEM) to study the aforementioned process. The method was validated by reproducing the Drafting–Kissing–Tumbling (DKT) process. Simulations of migration of injected particles with different sizes through porous media were conducted and three clogging scenarios had been identified. We investigated the impact of injected particle size distribution and porous media on particle migration and concluded the results in the polydisperse aspect. From the simulation, we can conclude that mix clogging is the scenario we should try to avoid. Besides, both critical ratio of particle diameter of porous media to median particle diameter of injected particles (D/d50) and critical standard deviation value exist. The particle size range should be as small as possible in economical limits and the D/d50 value should be larger than the critical value. Our results can provide a good guide for the produced water pretreatment, which can improve oil recovery.

References

1.
Wang
,
S.
,
Feng
,
Q.
, and
Han
,
X.
,
2013
, “
A Hybrid Analytical/Numerical Model for the Characterization of Preferential Flow Path With Non-Darcy Flow
,”
PLoS One
,
8
(
12
), p.
e83536
.
2.
Wang
,
X.
,
Haynes
,
R. D.
, and
Feng
,
Q.
,
2015
, “
Well Control Optimization Using Derivative-Free Algorithms and a Multiscale Approach
,”
Mathematics
,
5526
(
10
), pp.
3
15
.
3.
Tang
,
Y.
,
Hou
,
C.
,
He
,
Y.
,
Wang
,
Y.
,
Chen
,
Y.
, and
Rui
,
Z.
,
2020
, “
Review on Pore Structure Characterization and Microscopic Flow Mechanism of CO2 Flooding in Porous Media
,”
Energy Technol.
,
9
(
1
), p.
2000787
.
4.
He
,
Y.
,
Cheng
,
S.
,
Sun
,
Z.
,
Chai
,
Z.
, and
Rui
,
Z.
,
2020
, “
Improving Oil Recovery Through Fracture Injection and Production of Multiple Fractured Horizontal Wells
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
053002
.
5.
Hongwei
,
C.
,
Qihong
,
F.
,
Xianmin
,
Z.
,
Sen
,
W.
,
Wensheng
,
Z.
, and
Fan
,
L.
,
2019
, “
Well Placement Optimization with Cat Swarm Optimization Algorithm Under Oilfield Development Constraints
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012902
.
6.
Zhang
,
W.
,
Feng
,
Q.
,
Jin
,
Z.
,
Xing
,
X.
, and
Wang
,
S.
,
2021
, “
Molecular Simulation Study of Oil-Water Two-Phase Fluid Transport in Shale Inorganic Nanopores
,”
Chem. Eng. Sci.
, p.
116948
.
7.
Zou
,
S.
, and
Sun
,
C.
,
2020
, “
X-ray Micro-Computed Imaging of Wettability Characterization for Multiphase Flow in Porous Media: A Review
,”
Capillarity
,
3
(
3
), pp.
36
44
.
8.
Xia
,
T.
,
Feng
,
Q.
,
Wang
,
S.
,
Zhang
,
X.
, and
Ma
,
Z.
,
2019
, “
Decision-Making Technology of Well Candidates Selection in In-Depth Profile Control Based on Projection Pursuit Clustering Model
,”
Proceedings of the International Field Exploration and Development Conference
,
Springer
, pp.
1737
1751
.
9.
Wang
,
S.
,
Tian
,
J.
,
Tan
,
X.
,
Wang
,
L.
, and
Zhang
,
S.
,
2016
, “
Permeability Limits of Advanced Water Injection Technology in Low Permeability Reservoirs
,”
Proceedings of the SPE Asia Pacific Oil & Gas Conference and Exhibition
,
Society of Petroleum Engineers
.
10.
Wang
,
S.
,
Feng
,
Q.
,
Javadpour
,
F.
,
Zha
,
M.
, and
Cui
,
R.
,
2020
, “
Multiscale Modeling of Gas Transport in Shale Matrix: An Integrated Study of Molecular Dynamics and Rigid-Pore-Network Model
,”
SPE J.
,
25
(
3
), pp.
1416
1442
.
11.
Cao
,
Y.
,
Tang
,
M.
,
Zhang
,
Q.
,
Tang
,
J.
, and
Lu
,
S.
,
2020
, “
Dynamic Capillary Pressure Analysis of Tight Sandstone Based on Digital Rock Model
,”
Capillarity
,
3
(
2
), pp.
28
35
.
12.
Boyne
,
K.
,
Horn
,
M.
,
Bertrane
,
D.
,
Fournie
,
F.
,
Cooper
,
T.
,
Quinn
,
P.
,
Coudeville
,
F.
,
Buchan
,
D.
,
Allan
,
K.
, and
Arnott
,
S.
,
2003
, “
Otter-A Challenging Marginal Oil Field Development
,”
Proceedings of the Offshore Europe
,
Society of Petroleum Engineers
.
13.
Farajzadeh
,
R.
,
2004
, “
Produced Water Re-Injection (Pwri) an Experimental Investigation Into Internal Filtration and External Cake Build Up
,”
Delft University of Technology
.
14.
Xing
,
X.
,
Feng
,
Q.
,
Zhang
,
W.
, and
Wang
,
S.
,
2021
, “
Vapor-Liquid Equilibrium and Criticality of CO2 and n-Heptane in Shale Organic Pores by the Monte Carlo Simulation
,”
Fuel
,
299
(
16
), p.
120909
.
15.
Mohamed
,
I. M.
,
Block
,
G. I.
,
Abou-Sayed
,
O. A.
,
Elkatatny
,
S. M.
, and
Abou-Sayed
,
A. S.
,
2016
, “
Flow Rate-Dependent Skin in Water Disposal Injection Well
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052906
.
16.
Kalantariasl
,
A.
,
Schulze
,
K.
,
Storz
,
J.
,
Burmester
,
C.
,
Küenckeler
,
S.
,
You
,
Z.
,
Badalyan
,
A.
, and
Bedrikovetsky
,
P.
,
2019
, “
Produced Water Re-Injection and Disposal in Low Permeable Reservoirs
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072905
.
17.
Rui
,
Z.
,
Li
,
C.
,
Peng
,
F.
,
Ling
,
K.
,
Chen
,
G.
,
Zhou
,
X.
, and
Chang
,
H.
,
2017
, “
Development of Industry Performance Metrics for Offshore Oil and Gas Project
,”
J. Nat. Gas Sci. Eng.
,
39
(
1
), pp.
44
53
.
18.
Jiang
,
J.
,
Rui
,
Z.
,
Hazlett
,
R.
, and
Lu
,
J.
,
2019
, “
An Integrated Technical-Economic-Environmental Assessment of CO2 Enhanced Oil Recovery
,”
Appl. Energy
,
247
(
1
), pp.
190
211
.
19.
Grassian
,
D.
, and
Olsen
,
D. B.
,
2020
, “
Practical Applications of Net Energy Analysis of Upstream Oil and Gas Processes
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
064501
.
20.
Sharma
,
M. M.
,
Pang
,
S.
,
Wennberg
,
K. E.
, and
Morgenthaler
,
L.
,
2000
, “
Injectivity Decline in Water-Injection Wells: An Offshore Gulf of Mexico Case Study
,”
SPE Prod. Facil.
,
15
(
1
), pp.
6
13
.
21.
Moghadasi
,
J.
,
Müller-Steinhagen
,
H.
,
Jamialahmadi
,
M.
, and
Sharif
,
A.
,
2004
, “
Theoretical and Experimental Study of Particle Movement and Deposition in Porous Media During Water Injection
,”
J. Pet. Sci. Eng.
,
43
(
3–4
), pp.
163
181
.
22.
Ding
,
Y.
,
Wang
,
H.
, and
Yang
,
D.
,
2021
, “
Numerical Simulation of Reactive Particle Transport in a Randomly-Orientated Rough Fracture with Reversible and Irreversible Surface Attachments
,”
Colloids Surf., A
,
626
(
1
), p.
127008
.
23.
Kalantariasl
,
A.
,
Farajzadeh
,
R.
,
You
,
Z. J.
, and
Bedrikovetsky
,
P.
,
2015
, “
Nonuniform External Filter Cake in Long Injection Wells
,”
Ind. Eng. Chem. Res.
,
54
(
11
), pp.
3051
3061
.
24.
Sacramento
,
R. N.
,
Yang
,
Y. L.
,
You
,
Z. J.
,
Waldmann
,
A.
,
Martins
,
A. L.
,
Vaz
,
A. S. L.
,
Zitha
,
P. L. J.
, and
Bedrikovetsky
,
P.
,
2015
, “
Deep Bed and Cake Filtration of Two-Size Particle Suspension in Porous Media
,”
J. Pet. Sci. Eng.
,
126
(
1
), pp.
201
210
.
25.
Yuan
,
B.
,
Ghanbarnezhad Moghanloo
,
R.
, and
Pattamasingh
,
P.
,
2015
, “
Applying Method of Characteristics to Study Utilization of Nanoparticles to Reduce Fines Migration in Deepwater Reservoirs
,”
Proceedings of the SPE European Formation Damage Conference and Exhibition
,
Society of Petroleum Engineers
.
26.
Yang
,
Y.
,
You
,
Z.
,
Siqueira
,
F. D.
,
Vaz
,
A.
, and
Bedrikovetsky
,
P.
,
2016
, “
A New Phenomenon of Slow Fines Migration in Oil and Gas Fields (Laboratory and Mathematical Modelling)
,”
Proceedings of the SPE International Conference and Exhibition on Formation Damage Control
,
Society of Petroleum Engineers
.
27.
Ding
,
Y.
,
Meng
,
X.
, and
Yang
,
D.
,
2020
, “
Numerical Simulation of Polydisperse Dense Particles Transport in a Random-Orientated Fracture with Spatially Variable Apertures
,”
Colloids Surf., A
,
610
(
8–12
), p.
125729
.
28.
Baghdikian
,
S. Y.
,
Sharma
,
M. M.
, and
Handy
,
L. L.
,
1987
, “
Flow of Clay Suspensions Through Porous Media
,”
Proceedings of the SPE International Symposium on Oilfield Chemistry
,
Society of Petroleum Engineers
.
29.
Li
,
Z.
, and
Wong
,
R. C. K.
,
2008
, “
Estimation of Suspended Particle Retention Rate and Permeability Damage in Sandstone from Back Analysis of Laboratory Injection Tests
,”
Proceedings of the Canadian International Petroleum Conference
,
Petroleum Society of Canada
.
30.
Shi
,
X.
,
Prodanović
,
M.
,
Holder
,
J.
,
Gray
,
K. E.
, and
DiCarlo
,
D.
,
2013
, “
Coupled Solid and Fluid Mechanics Modeling of Formation Damage Near Wellbore
,”
J. Pet. Sci. Eng.
,
112
(
1
), pp.
88
96
.
31.
Meng
,
X.
, and
Yang
,
D.
,
2017
, “
Determination of Dynamic Dispersion Coefficients for Passive and Reactive Particles Flowing in A Circular Tube
,”
Colloids Surf., A
,
524
(
1
), pp.
96
110
.
32.
Feia
,
S.
,
Dupla
,
J. C.
,
Ghabezloo
,
S.
,
Sulem
,
J.
,
Canou
,
J.
,
Onaisi
,
A.
,
Lescanne
,
H.
, and
Aubry
,
E.
,
2015
, “
Experimental Investigation of Particle Suspension Injection and Permeability Impairment in Porous Media
,”
Geomech. Energy Environ.
,
3
(
1
), pp.
24
39
.
33.
Fischer
,
K.
,
Ferreira
,
F.
,
Holzberg
,
B.
,
Pastor
,
J.
,
Reinli
,
L.
,
Furuie
,
R.
,
Vasconcelos
,
D.
, and
Dutra
,
T.
,
2017
, “
Integrated Modeling of Formation Damage and Multiple Induced Hydraulic Fractures During Produced Water Reinjection
,”
Proceedings of the SPE Latin America and Caribbean Petroleum Engineering Conference
,
Society of Petroleum Engineers
.
34.
Ding
,
Y.
,
Meng
,
X.
, and
Yang
,
D.
,
2020
, “
Determination of Dynamic Dispersion Coefficient for Solid Particles Flowing in a Fracture With Consideration of Gravity Effect
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
053101
.
35.
Zhang
,
W.
,
Feng
,
Q.
,
Wang
,
S.
,
Xing
,
X.
, and
Jin
,
Z.
,
2021
, “
CO2-Regulated Octane Flow in Calcite Nanopores From Molecular Perspectives
,”
Fuel
,
286
(
2
), p.
119299
.
36.
Vetter
,
O.
,
Kandarpa
,
V.
,
Stratton
,
M.
, and
Veith
,
E.
,
1987
, “
Particle Invasion into Porous Medium and Related Injectivity Problems
,”
Proceedings of the SPE International Symposium on Oilfield Chemistry
,
Society of Petroleum Engineers
.
37.
Lei
,
H.
,
Cui
,
M.
,
Dai
,
C.
, and
Li
,
Q.
,
2017
, “
Experimental Study of Migration of Micro Particles in Porous Media
,”
J. Univ. Chin. Acad. Sci.
,
34
(
2
), pp.
251
258
.
38.
Zhu
,
W.
,
Li
,
J.
,
Lou
,
Y.
, and
Song
,
H.
,
2018
, “
Experiment and Capillary Bundle Network Model of Micro Polymer Particles Propagation in Porous Media
,”
Transp. Porous Media
,
122
(
1
), pp.
43
55
.
39.
Hammadi
,
A.
,
Ahfir
,
N. D.
,
Alem
,
A.
, and
Wang
,
H. Q.
,
2017
, “
Effects of Particle Size Non-Uniformity on Transport and Retention in Saturated Porous Media
,”
Transp. Porous Media
,
118
(
1
), pp.
1
14
.
40.
Herzig
,
J. P.
,
Leclerc
,
D. M.
, and
Goff
,
P. L.
,
1970
, “
Flow of Suspensions Through Porous Media—Application to Deep Filtration
,”
Ind. Eng. Chem. Res.
,
62
(
5
), pp.
8
35
.
41.
Wennberg
,
K. E.
, and
Sharma
,
M. M.
,
1997
, “
Determination of the Filtration Coefficient and the Transition Time for Water Injection Wells
,”
Proceedings of the SPE European Formation Damage Conference
,
Society of Petroleum Engineers
.
42.
Bedrikovetsky
,
P.
,
Marchesin
,
D.
,
Shecaira
,
F.
,
Souza
,
A. L.
,
Milanez
,
P. V.
, and
Rezende
,
E.
,
2001
, “
Characterisation of Deep Bed Filtration System from Laboratory Pressure Drop Measurements
,”
J. Pet. Sci. Eng.
,
32
(
2–4
), pp.
167
177
.
43.
Mirshekari
,
B.
,
Dadvar
,
M.
,
Modarress
,
H.
, and
Dabir
,
B.
,
2013
, “
Modelling and Simulation of Multiphase Flow Formation Damage by Fine Migration Including the Multilayer Deposition Effect
,”
Int. J. Oil, Gas Coal Technol.
,
6
(
6
), pp.
624
644
.
44.
Han
,
X.
,
Zhong
,
L.
,
Liu
,
Y.
,
Fang
,
T.
, and
Chen
,
C.
,
2020
, “
Experimental Study and Pore Network Modeling of Formation Damage Induced by Fines Migration in Unconsolidated Sandstone Reservoirs
,”
ASME J. Energy Resour. Technol.
,
142
(
11
), p.
113006
.
45.
Kokubun
,
M. E.
,
Muntean
,
A.
,
Radu
,
F. A.
,
Kumar
,
K.
,
Pop
,
I. S.
,
Keilegavlen
,
E.
, and
Spildo
,
K.
,
2019
, “
A Pore-Scale Study of Transport of Inertial Particles by Water in Porous Media
,”
Chem. Eng. Sci.
,
207
(
1
), pp.
397
409
.
46.
Wang
,
S.
,
Li
,
H.
,
Wang
,
R.
,
Tian
,
R.
,
Sun
,
Q.
, and
Ma
,
Y.
,
2018
, “
Numerical Simulation of Flow Behavior of Particles in a Porous Media Based on CFD-DEM
,”
J. Pet. Sci. Eng.
,
171
(
1
), pp.
140
152
.
47.
Feng
,
Q.
,
Cha
,
L.
,
Dai
,
C.
,
Zhao
,
G.
, and
Wang
,
S.
,
2020
, “
Effect of Particle Size and Concentration on the Migration Behavior in Porous Media by Coupling Computational Fluid Dynamics and Discrete Element Method
,”
Powder Technol.
,
360
(
1
), pp.
704
714
.
48.
Cook
,
B. K.
,
Noble
,
D. R.
, and
Williams
,
J. R.
,
2004
, “
A Direct Simulation Method for Particle-Fluid Systems
,”
Eng. Comput.
,
21
(
2–4
), pp.
151
168
.
49.
Cundall
,
P. A.
, and
Strack
,
O. D.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
,
29
(
1
), pp.
47
65
.
50.
Zhu
,
H. P.
,
Zhou
,
Z. Y.
,
Yang
,
R. Y.
, and
Yu
,
A. B.
,
2007
, “
Discrete Particle Simulation of Particulate Systems: Theoretical Developments
,”
Chem. Eng. Sci.
,
62
(
13
), pp.
3378
3396
.
51.
Abdelhamid
,
Y.
, and
El Shamy
,
U.
,
2015
, “
Pore-Scale Modeling of Fine-Particle Migration in Granular Filters
,”
Int. J. Geomech.
,
16
(
3
), p.
04015086
.
52.
Lei
,
H.
,
Dong
,
L.
,
Ruan
,
C.
, and
Ren
,
L.
,
2017
, “
Study of Migration and Deposition of Micro Particles in Porous Media by Lattice-Boltzmann Method
,”
Proceedings of the 9th International Conference on Applied Energy
,
J.
Yan
,
J.
Wu
, and
H.
Li
, eds
., pp.
4004
4009
.
53.
Farahani
,
M. V.
,
Foroughi
,
S.
,
Norouzi
,
S.
, and
Jamshidi
,
S.
,
2019
, “
Mechanistic Study of Fines Migration in Porous Media Using Lattice Boltzmann Method Coupled With Rigid Body Physics Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
123001
.
54.
Li
,
Q.
, and
Prigiobbe
,
V.
,
2018
, “
Numerical Simulations of the Migration of Fine Particles Through Porous Media
,”
Transp. Porous Media
,
122
(
3
), pp.
745
759
.
55.
Zhou
,
K.
,
Hou
,
J.
,
Sun
,
Q.
,
Guo
,
L.
,
Bing
,
S.
,
Du
,
Q.
, and
Yao
,
C.
,
2018
, “
A Study on Particle Suspension Flow and Permeability Impairment in Porous Media Using LBM–DEM–IMB Simulation Method
,”
Transp. Porous Media
,
124
(
3
), pp.
681
698
.
56.
Kloss
,
C.
,
Goniva
,
C.
,
Hager
,
A.
,
Amberger
,
S.
, and
Pirker
,
S.
,
2012
, “
Models, Algorithms and Validation for Opensource DEM and CFD-DEM
,”
Prog. Comput. Fluid Dyn.
,
12
(
2/3
), pp.
140
152
.
57.
Latt
,
J.
,
Malaspinas
,
O.
,
Kontaxakis
,
D.
,
Parmigiani
,
A.
,
Lagrava
,
D.
,
Brogi
,
F.
,
Belgacem
,
M. B.
,
Thorimbert
,
Y.
,
Leclaire
,
S.
,
Li
,
S.
,
Marson
,
F.
,
Lemus
,
J.
,
Kotsalos
,
C.
,
Conradin
,
R.
,
Coreixas
,
C.
,
Petkantchin
,
R.
,
Raynaud
,
F.
,
Beny
,
J.
, and
Chopard
,
B.
,
2021
, “
Palabos: Parallel Lattice Boltzmann Solver
,”
Comput. Math. Appl.
,
81
(
1
), pp.
334
350
.
58.
Mindlin
,
R.
, and
Deresiewicz
,
H.
,
1954
, “
Thickness-Shear and Flexural Vibrations of a Circular Disk
,”
J. Appl. Phys.
,
25
(
10
), pp.
1329
1332
.
59.
Thornton
,
C.
, and
Yin
,
K.
,
1991
, “
Impact of Elastic Spheres with and Without Adhesion
,”
Powder Technol.
,
65
(
1–3
), pp.
153
166
.
60.
Thornton
,
C.
, and
Ning
,
Z.
,
1998
, “
A Theoretical Model for the Stick/Bounce Behaviour of Adhesive, Elastic-Plastic Spheres
,”
Powder Technol.
,
99
(
2
), pp.
154
162
.
61.
Eshghinejadfard
,
A.
,
Daróczy
,
L.
,
Janiga
,
G.
, and
Thévenin
,
D.
,
2016
, “
Calculation of the Permeability in Porous Media Using the Lattice Boltzmann Method
,”
Int. J. Heat Fluid Flow
,
62
(
1
), pp.
93
103
.
62.
Wang
,
M.
,
Feng
,
Y.
, and
Wang
,
C.
,
2017
, “
Numerical Investigation of Initiation and Propagation of Hydraulic Fracture Using the Coupled Bonded Particle–Lattice Boltzmann Method
,”
Comput. Struct.
,
181
(
1
), pp.
32
40
.
63.
Noble
,
D.
, and
Torczynski
,
J.
,
1998
, “
A Lattice-Boltzmann Method for Partially Saturated Computational Cells
,”
Int. J. Mod. Phys. C
,
9
(
08
), pp.
1189
1201
.
64.
Han
,
K.
,
Feng
,
Y. T.
, and
Owen
,
D. R. J.
,
2007
, “
Coupled Lattice Boltzmann and Discrete Element Modelling of Fluid–Particle Interaction Problems
,”
Comput. Struct.
,
85
(
11–14
), pp.
1080
1088
.
65.
Feng
,
Y. T.
,
Han
,
K.
, and
Owen
,
D. R. J.
,
2007
, “
Coupled Lattice Boltzmann Method and Discrete Element Modelling of Particle Transport in Turbulent Fluid Flows: Computational Issues
,”
Int. J. Numer. Methods Eng.
,
72
(
9
), pp.
1111
1134
.
66.
Han
,
Y. H.
, and
Cundall
,
P. A.
,
2013
, “
LBM-DEM Modeling of Fluid-Solid Interaction in Porous Media
,”
Int. J. Numer. Anal. Methods Geomech.
,
37
(
10
), pp.
1391
1407
.
67.
Feng
,
Z.-G.
, and
Michaelides
,
E. E.
,
2004
, “
The Immersed Boundary-Lattice Boltzmann Method for Solving Fluid–Particles Interaction Problems
,”
J. Comput. Phys.
,
195
(
2
), pp.
602
628
.
68.
Niu
,
X.
,
Shu
,
C.
,
Chew
,
Y.
, and
Peng
,
Y.
,
2006
, “
A Momentum Exchange-Based Immersed Boundary-Lattice Boltzmann Method for Simulating Incompressible Viscous Flows
,”
Phys. Lett. A
,
354
(
3
), pp.
173
182
.
69.
Zhang
,
H.
,
Tan
,
Y. Q.
,
Shu
,
S.
,
Niu
,
X. D.
,
Trias
,
F. X.
,
Yang
,
D. M.
,
Li
,
H.
, and
Sheng
,
Y.
,
2014
, “
Numerical Investigation on the Role of Discrete Element Method in Combined LBM-IBM-DEM Modeling
,”
Comput. Fluids
,
94
(
1
), pp.
37
48
.
70.
Zhou
,
G.
,
Wang
,
L.
,
Wang
,
X.
,
Xiong
,
Q.
, and
Ge
,
W.
,
2011
, “
Direct Numerical Simulation Scheme for Particle-Fluid Systems Based on a Time-Driven Hard-Sphere and the Lattice Boltzmann Method
,”
Chin. Sci. Bull.
,
56
(
16
), pp.
1246
1256
.
71.
Ochi
,
J.
,
Detienne
,
J.-L.
, and
Rivet
,
P.
,
2007
, “
Internal Formation Damage Properties and Oil Deposition Profile
,”
Proceedings of the European Formation Damage Conference
,
Society of Petroleum Engineers
.
72.
Frequin
,
D.
,
Bedrikovetsky
,
P.
, and
Zitha
,
P. L.
,
2013
, “
CT Scan Study of the Leak-off of Oil-Based Drilling Fluids into Saturated Media
,”
Proceedings of the SPE European Formation Damage Conference & Exhibition
,
Society of Petroleum Engineers
.
73.
Xia
,
T.
,
Feng
,
Q.
,
Wang
,
S.
,
Zhao
,
Y.
, and
Xing
,
X.
,
2020
, “
A Bonded 3D LBM-DEM Approach for Sand Production Process
,”
Proceedings of the SPE Asia Pacific Oil & Gas Conference and Exhibition
,
Society of Petroleum Engineers
.
You do not currently have access to this content.