Abstract

The energy crisis of the modern era may be overcome by hydrokinetic energy, the most readily and free source of energy available, to provide basic electricity needs to remote and urban areas at a low cost. The kinetic energy of flowing water at low speed could be extracted effectively by designing an appropriate design of the blade, as the turbine’s performance is dependent upon the shape of its blade. In this study, the wind turbine model with some modifications was used to design a blade for the hydrokinetic turbine. The horizontal axis turbine model with propeller type configuration was selected for obtaining higher efficiency. The optimum hydrofoil was selected and designed with an optimal twist angle for the maximum energy extraction process. The model was designed in three-dimensional (3D) modeling software solidworks, and then the power analysis was carried out through numerical simulations using the commercial computational fluid dynamics package ansys fluent. The power output was analyzed with a different number of blades, and performance curves were generated for the most efficient system. The calculations exhibited that for 1.5 m/s rated speed of water with the rotor diameter of 0.6096 m provides the rated power of approximately 150 W at 110 RPMs. The power curve of the turbine was analyzed for the selection of an efficient Permanent Magnet Synchronous Generator, and a direct drive system was preferred to reduce the weight and losses. The turbine model was 3D printed for testing and experimentation. The analytical efficiency calculated was 30.52%, and the experimental efficiency achieved was 28.24%. This study shows that the optimum design of hydrokinetic turbines could be integrated into series to provide energy to remote areas where the construction of dams and other resources are not available.

References

1.
Tunio
,
I. A.
,
Shah
,
M. A.
,
Hussain
,
T.
,
Harijan
,
K.
,
Mirjat
,
N. H.
, and
Memon
,
A. H.
,
2020
, “
Investigation of Duct Augmented System Effect on the Overall Performance of Straight Blade Darrieus Hydrokinetic Turbine
,”
Renew. Energy
,
153
, pp.
143
154
.
2.
Mohammadi
,
S.
,
Hassanalian
,
M.
,
Arionfard
,
H.
, and
Bakhtiyarov
,
S.
,
2020
, “
Optimal Design of Hydrokinetic Turbine for Low-Speed Water Flow in Golden Gate Strait
,”
Renew. Energy
,
150
, pp.
147
155
.
3.
Mon
,
E. E.
,
2019
, “
Design of Low Head Hydrokinetic Turbine
,”
Int. J. Trend Sci. Res. Dev.
,
3
(
3
), pp.
2106
2109
.
4.
Riglin
,
J. D.
,
2016
,
Design, Modeling and Prototyping of a Hydrokinetic Turbine Unit for River Application
, Theses and Dissertations 2783,
Lehigh University
,
180
. http://preserve.lehigh.edu/etd/2783
5.
Motley
,
M. R.
, and
Barber
,
R. B.
, Apr.
2014
, “
Passive Control of Marine Hydrokinetic Turbine Blades
,”
Compos. Struct.
,
110
(
1
), pp.
133
139
.
6.
Anyi
,
M.
, and
Kirke
,
B.
,
2011
, “
Hydrokinetic Turbine Blades: Design and Local Construction Techniques for Remote Communities
,”
Energy Sustainable Dev.
,
15
(
3
), pp.
223
230
.
7.
Lago
,
L. I.
,
Ponta
,
F. L.
, and
Chen
,
L.
,
2010
, “
Advances and Trends in Hydrokinetic Turbine Systems
,”
Energy Sustainable Dev.
,
14
(
4
), pp.
287
296
.
8.
Hu
,
Z.
, and
Du
,
X.
,
2012
, “
Reliability Analysis for Hydrokinetic Turbine Blades
,”
Renew. Energy
,
48
, pp.
251
262
.
9.
Khan
,
M. J.
,
Bhuyan
,
G.
,
Iqbal
,
M. T.
, and
Quaicoe
,
J. E.
,
2009
, “
Hydrokinetic Energy Conversion Systems and Assessment of Horizontal and Vertical Axis Turbines for River and Tidal Applications: A Technology Status Review
,”
Appl. Energy
,
86
(
10
), pp.
1823
1835
.
10.
Johnson
,
G. L.
,
2001
, “
Wind Turbine Power
,”
Wind Energy Syst.
, pp.
1
54
.
11.
Mofei
,
L.
,
2014
, “
Hydrokinetic Turbine Power Converter and Controller System Design and Implementation
,”
Doctoral dissertation
,
University of British Columbia
. http://docplayer.net/37143202-Hydrokinetic-turbine-power-converter-and-controller-system-design-and-implementation-mofei-liu.html
12.
Góralczyk
,
A.
, and
Adamkowski
,
A.
,
2018
, “
Model of a Ducted Axial-Flow Hydrokinetic Turbine—Results of Experimental and Numerical Examination
,”
Polish Marit. Res.
,
25
(
3
), pp.
113
122
.
13.
Shashikumar
,
C. M.
, and
Madav
,
V.
,
2021
, “
Numerical and Experimental Investigation of Modified V-Shaped Turbine Blades for Hydrokinetic Energy Generation
,”
Renew. Energy
,
177
, pp.
1170
1197
.
14.
Wang
,
Y.
,
Zhao
,
M.
,
Chang
,
J.
,
Wang
,
X.
, and
Tian
,
Y.
,
2019
, “
Study on the Combined Operation of a Hydro-Thermal-Wind Hybrid Power System Based on Hydro-Wind Power Compensating Principles
,”
Energy Convers. Manage.
,
194
, pp.
94
111
.
15.
dos Santos
,
I. F. S.
,
Camacho
,
R. G. R.
, and
Tiago Filho
,
G. L.
,
2021
, “
Study of the Wake Characteristics and Turbines Configuration of a Hydrokinetic Farm in an Amazonian River Using Experimental Data and CFD Tools
,”
J. Clean. Prod.
,
299
, p.
126881
.
16.
Medimorec
,
D.
, and
Tomšić
,
Ž
,
2015
, “
Portfolio Theory Application in Wind Potential Assessment
,”
Renew. Energy
,
76
, pp.
494
502
.
17.
Ibrahim
,
W. I.
,
Mohamed
,
M. R.
,
Ismail
,
R. M. T. R.
,
Leung
,
P. K.
,
Xing
,
W. W.
, and
Shah
,
A. A.
,
2021
, “
Hydrokinetic Energy Harnessing Technologies: A Review
,”
Energy Rep.
,
7
, pp.
2021
2042
.
18.
Sarma
,
N. K.
,
Biswas
,
A.
, and
Misra
,
R. D.
,
2014
, “
Experimental and Computational Evaluation of Savonius Hydrokinetic Turbine for Low Velocity Condition With Comparison to Savonius Wind Turbine at the Same Input Power
,”
Energy Convers. Manage..
,
83
, pp.
88
98
.
19.
Kang
,
C.
,
Zhao
,
H.
,
Zhang
,
Y.
, and
Ding
,
K.
,
2021
, “
Effects of Upstream Deflector on Flow Characteristics and Startup Performance of a Drag-Type Hydrokinetic Rotor
,”
Renew. Energy
,
172
, pp.
290
303
.
20.
Schleicher
,
W. C.
,
Riglin
,
J. D.
, and
Oztekin
,
A.
,
2015
, “
Numerical Characterization of a Preliminary Portable Micro-Hydrokinetic Turbine Rotor Design
,”
Renew. Energy
,
76
, pp.
234
241
.
21.
Cavalari Labigalini
,
L.
,
de V. Salvo
,
R.
,
Sene de Lima
,
R.
,
Corrêa da Silva
,
R.
, and
de Marchi Neto
,
I.
,
2021
, “
Hydrokinetic Turbine Design Through Performance Prediction and Hybrid Metaheuristic Multi-Objective Optimization
,”
Energy Convers. Manage.
,
238
, p.
114169
.
22.
Mahmuddin
,
F.
,
2017
, “
Rotor Blade Performance Analysis With Blade Element Momentum Theory
,”
Energy Procedia
,
105
, pp.
1123
1129
.
23.
Døssing
,
M.
,
Madsen
,
H. A.
, and
Bak
,
C.
,
2012
, “
Aerodynamic Optimization of Wind Turbine Rotors Using a Blade Element Momentum Method With Corrections for Wake Rotation and Expansion
,”
Wind Energy
,
15
(
4
), pp.
563
574
.
24.
Madsen
,
H. Aa.
,
Riziotis
,
V.
,
Zahle
,
F.
,
Hansen
,
M. O. L.
,
Snel
,
H.
,
Grasso
,
F.
,
Larsen
,
T. J.
,
Politis
,
E.
, and
Rasmussen
,
F.
,
2012
, “
Blade Element Momentum Modeling of Inflow with Shear in Comparison With Advanced Model Results
,”
Wind Energy
,
15
(
1
), pp.
63
81
.
25.
MacNeill
,
R.
, and
Verstraete
,
D.
,
2017
, “
Blade Element Momentum Theory Extended to Model Low Reynolds Number Propeller Performance
,”
Aeronaut. J.
,
121
(
1240
), pp.
835
857
.
26.
Van Treuren
,
K.
,
2015
, “
Small-Scale Wind Turbine Testing in Wind Tunnels Under Low Reynolds Number Conditions
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051208
.
27.
Sanderse
,
B.
,
Van Der Pijl
,
S. P.
, and
Koren
,
B.
,
2011
, “
Review of Computational Fluid Dynamics for Wind Turbine Wake Aerodynamics
,”
Wind Energy
,
14
(
7
), pp.
799
819
.
28.
Chica
,
E.
,
Ṕerez
,
F.
,
Rubio-Clemente
,
A.
, and
Agudelo
,
S.
,
2015
, “
Design of a Hydrokinetic Turbine
,”
WIT Trans. Ecol. Environ.
,
195
, pp.
137
148
.
29.
Ingram
,
G.
,
2011
, “
Wind Turbine Blade Analysis Using the Blade Element Momentum Method
,”
October
,
1.1
(
c
), pp.
1
21
, https://community.dur.ac.uk/g.l.ingram/download/wind_turbine_design.pdf
30.
Manwell
,
J. F.
,
McGowan
,
J. G.
, and
Rogers
,
A. L.
,
2010
,
Wind Energy Explained: Theory, Design and Application
, 2nd ed.,
John Wiley & Sons Ltd.
31.
Muratoglu
,
A.
, and
Yuce
,
M. I.
,
2015
, “
Performance Analysis of Hydrokinetic Turbine Blade Sections
,”
Avestia Publ. Adv. Renew. Energy
,
2
, pp.
1
10
.
32.
Muratoglu
,
A.
, and
Yuce
,
M. I.
,
2017
, “
Design of a River Hydrokinetic Turbine Using Optimization and CFD Simulations
,”
J. Energy Eng.
,
143
(
4
), p.
04017009
.
33.
Nachtane
,
M.
,
Tarfaoui
,
M.
,
El Moumen
,
A.
,
Saifaoui
,
D.
, and
Benyahia
,
H.
,
2019
, “
Design and Hydrodynamic Performance of a Horizontal Axis Hydrokinetic Turbine
,”
Int. J. Automot. Mech. Eng.
,
16
(
2
), pp.
6453
6469
.
34.
Zhao
,
L.
,
Liang
,
J.
,
Tang
,
L.
,
Yang
,
Y.
, and
Liu
,
H.
,
2015
, “
Enhancement of Galloping-Based Wind Energy Harvesting by Synchronized Switching Interface Circuits
,”
Active and Passive Smart Structures and Integrated Systems
,
9431
pp.
116
125
.
35.
Gao
,
Z.
,
Yu
,
Z.
, and
Wang
,
J.
,
2013
, “
An Optimization-Based Iterative Approach to Tetrahedral Mesh Smoothing
,”
Lect. Notes Comput. Vis. Biomech.
,
3
, pp.
143
157
.
36.
Al-Bahadly
,
I.
, and
Al-Bahadly
,
I.
,
2018
, “
An Integrated Wind and Hydro Power System Using Switched Reluctance Generator
,”
J. Power Energy Eng.
,
6
(
2
), pp.
1
19
.
37.
Ekanayake
,
J. B.
,
Holdsworth
,
L.
,
Wu
,
X. G.
, and
Jenkins
,
N.
,
2003
, “
Dynamic Modeling of Doubly Fed Induction Generator Wind Turbines
,”
IEEE Trans. Power Syst.
,
18
(
2
), pp.
803
809
.
38.
Jeffcoate
,
P.
,
Whittaker
,
T.
,
Boake
,
C.
, and
Elsaesser
,
B.
,
2016
, “
Field Tests of Multiple 1/10 Scale Tidal Turbines in Steady Flows
,”
Renew. Energy
,
87
, pp.
240
252
.
39.
Atcheson
,
M.
,
MacKinnon
,
P.
, and
Elsaesser
,
B.
,
2015
, “
A Large Scale Model Experimental Study of a Tidal Turbine in Uniform Steady Flow
,”
Ocean Eng.
,
110
, pp.
51
61
.
40.
Tian
,
W.
,
Mao
,
Z.
, and
Ding
,
H.
,
2018
, “
Design, Test and Numerical Simulation of a Low-Speed Horizontal Axis Hydrokinetic Turbine
,”
Int. J. Nav. Archit. Ocean Eng.
,
10
(
6
), pp.
782
793
.
You do not currently have access to this content.