Abstract

A recent proposed dual-fuel combustion mode, intelligent charge compression ignition (ICCI), realizes the high-efficiency and clean combustion by organizing continuous stratification in a wide range of engine load. The paper investigated the performance of alcohol blended gasoline as low-reactivity fuel (LRF) in ICCI combustion mode. Pure ethanol named E100 was also tested as LRF for comparison. To emphasize the differences of LRF properties and exclude the effect of the heat release phasing, the diesel injection timing was adjusted to maintain the same combustion phasing (CA50) at various LRF ratios under medium load. The results showed that E100 and E85 (ethanol ratio in gasoline-ethanol blend) promoted the degree of homogeneous combustion and eradicated soot emissions despite a slight increase of NOx. The maximum indicated thermal efficiency (ITE) was over 51.1% using E85, followed by 50.5% of E50. The perfect substitution ratio at the maximum ITE decreased from more than 80% to about 65% when increasing the ethanol ratio in LRF from 10% to 100%. The unregulated emissions such as aldehydes, ethylene, and methane, produced from incomplete combustion of ethanol were inhabited by E85, while the formation of toluene attributed to the appropriate carbon chain length of gasoline diminished when using E85 and E100.

References

1.
Gao
,
T.
,
Divekar
,
P.
,
Asad
,
U.
,
Han
,
X.
,
Reader
,
G. T.
,
Wang
,
M.
,
Zheng
,
M.
, and
Tjong
,
J.
,
2013
, “
An Enabling Study of Low Temperature Combustion With Ethanol in a Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042203
.
2.
Fang
,
W.
,
Fang
,
J.
,
Kittelson
,
D. B.
, and
Northrop
,
W. F.
,
2015
, “
An Experimental Investigation of Reactivity-Controlled Compression Ignition Combustion in a Single-Cylinder Diesel Engine Using Hydrous Ethanol
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p. 031101.
3.
Agarwal
,
A. K.
,
Singh
,
A. P.
, and
Maurya
,
R. K.
,
2017
, “
Evolution, Challenges and Path Forward for Low Temperature Combustion Engines
,”
Prog. Energy Combust. Sci.
,
61
, pp.
1
56
.
4.
Baeyens
,
J.
,
Kang
,
Q.
,
Appels
,
L.
,
Dewil
,
R.
,
Lv
,
Y.
, and
Tan
,
T.
,
2015
, “
Challenges and Opportunities in Improving the Production of Bio-Ethanol
,”
Prog. Energy Combust. Sci.
,
47
, pp.
60
88
.
5.
Sarkar
,
A.
, and
Saha
,
U. K.
,
2018
, “
Effect of Intake Charge Preheating and Equivalence Ratio in a Dual Fuel Diesel Engine Run on Biogas and Ethanol-Blended Diesel
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p. 041802.
6.
He
,
T.
,
Chen
,
Z.
,
Zhu
,
L.
, and
Zhang
,
Q.
,
2018
, “
The Influence of Alcohol Additives and EGR on the Combustion and Emission Characteristics of Diesel Engine Under High-Load Condition
,”
Appl. Therm. Eng.
,
140
, pp.
363
372
.
7.
Lu
,
X.
,
Han
,
D.
, and
Huang
,
Z.
,
2011
, “
Fuel Design and Management for the Control of Advanced Compression-Ignition Combustion Modes
,”
Prog. Energy Combust. Sci.
,
37
(
6
), pp.
741
783
.
8.
Duraisamy
,
G.
,
Rangasamy
,
M.
, and
Govindan
,
N.
,
2020
, “
A Comparative Study on Methanol/Diesel and Methanol/PODE Dual Fuel RCCI Combustion in an Automotive Diesel Engine Conventional Mode of Operation
,”
Renewable Energy
,
145
, pp.
542
556
.
9.
Reitz
,
R. D.
, and
Duraisamy
,
G.
,
2015
, “
Review of High Efficiency and Clean Reactivity Controlled Compression Ignition (RCCI) Combustion in Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
46
, pp.
12
71
.
10.
Lu
,
X.
,
Ji
,
L.
,
Ma
,
J.
,
Zhou
,
X.
, and
Huang
,
Z.
,
2011
, “
Combustion Characteristics and Influential Factors of Isooctane Active-Thermal Atmosphere Combustion Assisted by Two-Stage Reaction of n-Heptane
,”
Combust. Flame
,
158
(
2
), pp.
203
216
.
11.
Lu
,
X.
,
Zhou
,
X.
,
Ji
,
L.
,
Yang
,
Z.
,
Han
,
D.
,
Huang
,
C.
, and
Huang
,
Z.
,
2013
, “
Experimental Studies on the Dual-Fuel Sequential Combustion and Emission Simulation
,”
Energy
,
51
, pp.
358
373
.
12.
Wissink
,
M.
, and
Reitz
,
R.
,
2017
, “
The Role of the Diffusion-Limited Injection in Direct Dual Fuel Stratification
,”
Int. J. Engine Res.
,
18
(
4
), pp.
351
365
.
13.
Zhao
,
W.
,
Li
,
Z.
,
Huang
,
G.
,
Zhang
,
Y.
,
Qian
,
Y.
, and
Lu
,
X.
,
2020
, “
Experimental Investigation of Direct Injection Dual Fuel of N-Butanol and Biodiesel on Intelligent Charge Compression Ignition (ICCI) Combustion Mode
,”
Appl. Energy
,
266
, p.
114884
.
14.
Li
,
Z.
,
Huang
,
G.
,
Zhang
,
Y.
,
Zhao
,
W.
,
Li
,
J.
,
He
,
Z.
,
Qian
,
Y.
, and
Lu
,
X.
,
2020
, “
Dual Fuel Intelligent Charge Compression Ignition (ICCI) Combustion: Efficient and Clean Combustion Technology for Compression Ignition Engines
,”
Fuel
,
279
, p.
118565
.
15.
Li
,
Z. L.
,
Qian
,
Y.
,
Huang
,
G.
,
Zhao
,
W. Bin
,
Zhang
,
Y. Y.
, and
Lu
,
X. C.
,
2020
, “
Gasoline-Diesel Dual Fuel Intelligent Charge Compression Ignition (ICCI) Combustion: Conceptual Model and Comparison With Other Advanced Combustion Modes
,”
Sci. China Technol. Sci.
,
64
(
4
), pp.
1
10
.
16.
Li
,
Z.
,
Zhang
,
Y.
,
Huang
,
G.
,
Zhao
,
W.
,
He
,
Z.
,
Qian
,
Y.
, and
Lu
,
X.
,
2020
, “
Control of Intake Boundary Conditions for Enabling Clean Combustion in Variable Engine Conditions Under Intelligent Charge Compression Ignition (ICCI) Mode
,”
Appl. Energy
,
274
, p.
115297
.
17.
Tong
,
L.
,
Wang
,
H.
,
Zheng
,
Z.
,
Reitz
,
R.
, and
Yao
,
M.
,
2016
, “
Experimental Study of RCCI Combustion and Load Extension in a Compression Ignition Engine Fueled With Gasoline and PODE
,”
Fuel
,
181
, pp.
878
886
.
18.
Yan
,
B.
,
Tong
,
L.
,
Wang
,
H.
,
Zheng
,
Z.
,
Qin
,
Y.
, and
Yao
,
M.
,
2017
, “
Experimental and Numerical Investigation of the Effects of Combustion Chamber Reentrant Level on Combustion Characteristics and Thermal Efficiency of Stoichiometric Operation Natural Gas Engine With EGR
,”
Appl. Therm. Eng.
,
123
, pp.
1473
1483
.
19.
Li
,
Z.
,
Li
,
J.
,
Huang
,
G.
,
Zhang
,
Y.
,
He
,
Z.
,
Qian
,
Y.
, and
Lu
,
X.
,
2020
, “
A Methodology for Stratified-Charge Preparation via Low-Reactivity Fuel Multi-Injection Strategy in Intelligent Charge Compression Ignition (ICCI) Mode
,”
Fuel
,
289
, p.
119751
.
20.
Dempsey
,
A. B.
,
Curran
,
S.
,
Wagner
,
R.
,
Cannella
,
W.
, and
Ickes
,
A.
,
2021
, “
Gasoline Compression Ignition on a Light-Duty Multi-Cylinder Engine Using a Wide Range of Fuel Reactivities and Heavy Fuel Stratification
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
092303
.
21.
No
,
S. Y.
,
2019
, “
Application of Bioethanol to Advanced CI Engines; Dual Fuel and RCCI Combustion Modes—A Review
,”
Int. J. Green Energy
,
16
(
14
), pp.
1105
1130
.
22.
Nord
,
A. J.
,
Hwang
,
J. T.
, and
Northrop
,
W. F.
,
2017
, “
Emibions From a Diesel Engine Operating in a Dual-Fuel Mode Using Port-Fuel Injection of Heated Hydrous Ethanol
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022204
.
23.
Hwang
,
J. T.
,
Kane
,
S. P.
, and
Northrop
,
W. F.
,
2019
, “
Hydrous Ethanol Steam Reforming and Thermochemical Recuperation to Improve Dual-Fuel Diesel Engine Emissions and Efficiency
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112203
.
24.
Gürbüz
,
H.
,
Demirtürk
,
S.
,
Akçay
,
İH
, and
Akçay
,
H.
,
2021
, “
Effect of Port Injection of Ethanol on Engine Performance, Exhaust Emissions and Environmental Factors in a Dual-Fuel Diesel Engine
,”
Energy Environ.
,
32
(
5
), pp.
784
802
.
25.
Pedrozo
,
V. B.
,
May
,
I.
,
Guan
,
W.
, and
Zhao
,
H.
,
2018
, “
High Efficiency Ethanol-Diesel Dual-Fuel Combustion: A Comparison Against Conventional Diesel Combustion From Low to Full Engine Load
,”
Fuel
,
230
, pp.
440
451
.
26.
Pedrozo
,
V. B.
,
May
,
I.
,
Lanzanova
,
T. D. M.
, and
Zhao
,
H.
,
2016
, “
Potential of Internal EGR and Throttled Operation for Low Load Extension of Ethanol-Diesel Dual-Fuel Reactivity Controlled Compression Ignition Combustion on a Heavy-Duty Engine
,”
Fuel
,
179
, pp.
391
405
.
27.
Ghadikolaei
,
M. A.
,
Cheung
,
C. S.
, and
Yung
,
K. F.
,
2019
, “
Study of Combustion, Performance and Emissions of a Diesel Engine Fueled with Ternary Fuel in Blended and Fumigation Modes
,”
Fuel
,
235
, pp.
288
300
.
28.
Qian
,
Y.
,
Wang
,
X.
,
Zhu
,
L.
, and
Lu
,
X.
,
2015
, “
Experimental Studies on Combustion and Emissions of RCCI (Reactivity Controlled Compression Ignition) With Gasoline/n-Heptane and Ethanol/n-Heptane as Fuels
,”
Energy
,
88
, pp.
584
594
.
29.
Gürbüz
,
H.
, and
Demirtürk
,
S.
,
2020
, “
Investigation of Dual-Fuel Combustion by Different Port Injection Fuels (Neat Ethanol and E85) in a DE95 Diesel/Ethanol Blend Fueled Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122306
.
30.
Coskun
,
G.
,
Demir
,
U.
,
Soyhan
,
H. S.
,
Turkcan
,
A.
,
Ozsezen
,
A. N.
, and
Canakci
,
M.
,
2018
, “
An Experimental and Modeling Study to Investigate Effects of Different Injection Parameters on a Direct Injection HCCI Combustion Fueled With Ethanol–Gasoline Fuel Blends
,”
Fuel
,
215
, pp.
879
891
.
31.
Shirvani
,
S.
,
Shirvani
,
S.
,
Shamekhi
,
A. H.
, and
Reitz
,
R. D.
,
2020
, “
A Study of Using E10 and E85 Under Direct Dual Fuel Stratification (DDFS) Strategy: Exploring the Effects of the Reactivity-Stratification and Diffusion-Limited Injection on Emissions and Performance in an E10/Diesel DDFS Engine
,”
Fuel
,
275
, p.
117870
.
32.
Benajes
,
J.
,
García
,
A.
,
Monsalve-Serrano
,
J.
, and
Villalta
,
D.
,
2018
, “
Benefits of E85 Versus Gasoline as Low Reactivity Fuel for an Automotive Diesel Engine Operating in Reactivity Controlled Compression Ignition Combustion Mode
,”
Energy Convers. Manage.
,
159
, pp.
85
95
.
33.
Sarjovaara
,
T.
,
Larmi
,
M.
, and
Vuorinen
,
V.
,
2015
, “
Effect of Charge Air Temperature on E85 Dual-Fuel Diesel Combustion
,”
Fuel
,
153
, pp.
6
12
.
34.
Catapano
,
F.
,
Sementa
,
P.
, and
Vaglieco
,
B. M.
,
2016
, “
Air-Fuel Mixing and Combustion Behavior of Gasoline-Ethanol Blends in a GDI Wall-Guided Turbocharged Multi-Cylinder Optical Engine
,”
Renew. Energy
,
96
, pp.
319
332
.
35.
Cadrazco
,
M.
,
Agudelo
,
J. R.
,
Orozco
,
L. Y.
, and
Estrada
,
V.
,
2017
, “
Genotoxicity of Diesel Particulate Matter Emitted by Port-Injection of Hydrous Ethanol and n-Butanol
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042207
.
36.
Feng
,
H.
,
Xiao
,
S.
,
Nan
,
Z.
,
Wang
,
D.
, and
Yang
,
C.
,
2021
, “
Thermodynamic Analysis of Using Ethanol—Methanol—Gasoline Blends in a Turbocharged, Spark-Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120903
.
37.
Jamuwa
,
D. K.
,
Sharma
,
D.
, and
Soni
,
S. L.
,
2016
, “
Experimental Investigation of Performance, Exhaust Emission and Combustion Parameters of Stationary Compression Ignition Engine Using Ethanol Fumigation in Dual Fuel Mode
,”
Energy Convers. Manage.
,
115
, pp.
221
231
.
38.
Agarwal
,
A. K.
,
Singh
,
A. P.
, and
Kumar
,
V.
,
2022
, “
Reactivity Controlled Compression Ignition Engine Fueled With Mineral Diesel and Butanol at Varying Premixed Ratios and Loads
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
022304
.
39.
Willems
,
R.
,
Willems
,
F.
,
Deen
,
N.
, and
Somers
,
B.
,
2021
, “
Heat Release Rate Shaping for Optimal Gross Indicated Efficiency in a Heavy-Duty RCCI Engine Fueled With E85 and Diesel
,”
Fuel
,
288
, p.
119656
.
40.
Appel
,
D.
,
Hagen
,
F. P.
,
Wagner
,
U.
,
Koch
,
T.
,
Bockhorn
,
H.
, and
Trimis
,
D.
,
2021
, “
Influence of Low Ambient Temperatures on the Exhaust Gas and Deposit Composition of Gasoline Engines
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082306
.
41.
Rangasamy
,
M.
,
Duraisamy
,
G.
, and
Govindan
,
N.
,
2020
, “
A Comprehensive Parametric, Energy and Exergy Analysis for Oxygenated Biofuels Based Dual-Fuel Combustion in an Automotive Light Duty Diesel Engine
,”
Fuel
,
277
, p.
118167
.
42.
Sharma
,
N.
,
Agarwal
,
R. A.
, and
Agarwal
,
A. K.
,
2018
, “
Particulate Bound Trace Metals and Soot Morphology of Gasohol Fueled Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022201
.
43.
Roso
,
V. R.
,
Santos
,
N. D. S. A.
,
Alvarez
,
C. E. C.
,
Rodrigues Filho
,
F. A.
,
Pujatti
,
F. J. P.
, and
Valle
,
R. M.
,
2019
, “
Effects of Mixture Enleanment in Combustion and Emission Parameters Using a Flex-Fuel Engine With Ethanol and Gasoline
,”
Appl. Therm. Eng.
,
153
, pp.
463
472
.
44.
Kalwar
,
A.
,
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2020
, “
Utilization of Primary Alcohols in Dual-Fuel Injection Mode in a Gasoline Direct Injection Engine
,”
Fuel
,
276
, p.
118068
.
45.
Maurya
,
R. K.
, and
Agarwal
,
A. K.
,
2014
, “
Experimental Investigations of Performance, Combustion and Emission Characteristics of Ethanol and Methanol Fueled HCCI Engine
,”
Fuel Process. Technol.
,
126
, pp.
30
48
.
46.
Zhen
,
X.
,
Wang
,
Y.
, and
Liu
,
D.
,
2017
, “
An Overview of the Chemical Reaction Mechanisms for Gasoline Surrogate Fuels
,”
Appl. Therm. Eng.
,
124
, pp.
1257
1268
.
47.
Verhelst
,
S.
,
Turner
,
J. W.
,
Sileghem
,
L.
, and
Vancoillie
,
J.
,
2019
, “
Methanol as a Fuel for Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
70
, pp.
43
88
.
48.
Patel
,
C.
,
Hwang
,
J.
,
Bae
,
C.
, and
Agarwal
,
A. K.
,
2021
, “
Regulated, Unregulated, and Particulate Emissions From Biodiesel Blend Fueled Transportation Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
084501
.
49.
Ghadikolaei
,
M. A.
,
2016
, “
Effect of Alcohol Blend and Fumigation on Regulated and Unregulated Emissions of IC Engines—A Review
,”
Renewable Sustainable Energy Rev.
,
57
, pp.
1440
1495
.
You do not currently have access to this content.