Abstract

Investigating the mechanical erosion of the solid rocket motor convergent-divergent (C-D) nozzle is essential to overcome its development barriers. Consequently, the break-up mechanism of the aluminum oxide agglomerates was studied to determine the influence of the exhaust gas flow acceleration during the flight. Water and air flows were used as a substitute for aluminum oxide and exhaust gases. Experiments were conducted at different water flowrates and constant air velocity, where the results were used to validate a numerical model. The results revealed an excellent acceptance between the numerical, the experimental data (6–19%), and the effect of increasing the water flowrate on the break-up mechanism. The validated numerical model was further used to study the airflow acceleration impact on the break-up process. It was found that applying acceleration to the airflow subjects the water surface to rapid and sudden changes in the relative velocity between the gas and liquid, thus separating more water fragments from the primary liquid. In other words, it enhances the break-up process by reducing the average diameter with a range from 6.5% to 9% compared to the no-acceleration case and increasing the average droplets’ number (8.5–17%).

References

1.
Swope
,
L. W.
, and
Berard
,
M. F.
,
1964
, “
Effects of Solid-Rocket Propellant Formulations and Exhaust-Gas Chemistries on the Erosion of Graphite Nozzles
,”
AIAA Solid Propellant Rocket Conference
,
Palo Alto, CA
,
Jan
.
2.
Geisler
,
R. L.
,
1978
, “
The Relationship Between Solid Propellant Formulation Variables and Nozzle Recession Rates
,”
JANNAF Rocket Nozzle Technology Subcommittee Workshop
,
Lancaster, CA
,
July 12–13
.
3.
Borass
,
S.
,
1984
, “
Modeling Slag Deposition in the Space Shuttle Solid Rocket Motor
,”
J. Spacecr. Rockets
,
21
(
1
), pp.
47
54
.
4.
Wong
,
E.
,
1968
, “
Solid Rocket Nozzle Design Summary
,”
Proceedings of 4th Propulsion Joint Specialist Conference
,
Cleveland, OH
,
June 10–14
.
5.
Amano
,
R. S.
, and
Yen
,
Y.-H.
,
2014
, “
Chapter 19: Experimental Investigation of Molten Alumina Breakup in Gas Flows in a Solid Rocket Chamber
,”
5th International Conference on Chemical Engineering and Applications
, Vol.
74
,
IPCBEE, IACSIT Press
,
Singapore
.
6.
Thakre
,
P.
, and
Yang
,
V.
,
2008
, “
Chemical Erosion of Carbon–Carbon/Graphite Nozzles in Solid Propellant Rocket Motors
,”
J. Propul. Power
,
24
(
4
), pp.
822
833
.
7.
Thakre
,
P.
, and
Yang
,
V.
,
2009
, “
Chemical Erosion of Refractory Metal Nozzle Inserts in Solid-Propellant Rocket Motors
,”
J. Propul. Power
,
25
(
1
), pp.
40
50
.
8.
Thakre
,
P.
, and
Yang
,
V.
,
2012
, “
Effect of Surface Roughness and Radiation on Graphite Nozzle Erosion in Solid Rocket Motors
,”
J. Propul. Power
,
28
(
2
), pp.
448
451
.
9.
Thakre
,
P.
, and
Yang
,
V.
,
2009
, “
Mitigation of Graphite Nozzle Erosion by Boundary Layer Control in Solid Propellant Rocket Motors
,”
J. Propul. Power
,
25
(
5
), pp.
1079
1085
.
10.
Xiao
,
Y.
, and
Amano
,
R.
,
2006
, “
Aluminized Composite Solid Propellant Particle Path in the Combustion Chamber of a Solid Rocket Motor
,”
WIT Trans. Eng. Sci.
,
52
, pp.
153
164
.
11.
Sabnis
,
J.
,
2003
, “
Numerical Simulation of Distributed Combustion in Solid Rocket Motor with Metallized Propellant
,”
J. Propul. Power
,
19
(
1
), pp.
48
55
.
12.
Sutton
,
G. P.
,
1992
,
Rocket Propulsion Elements
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
, p.
484
.
13.
Besnerais
,
G.
,
Nugue
,
M.
,
Devillers
,
R. W.
, and
Cesco
,
N.
,
2017
, “
Experimental Analysis of Solid-Propellant Surface During Combustion with Shadowgraphy Images: New Tools to Assist Aluminum-Agglomeration Modelling
,”
Proceedings of 7th European Conference for Aeronautics and Aerospace Sciences (EUCASS)
,
Milan, Italy
,
July 3–6
.
14.
Butler
,
A. G.
,
1988
, “
Holographic Investigation of Solid Propellant Combustion
,”
Postgraduate thesis
,
Naval Postgraduate School
,
Monterey, CA
.
15.
Grigor’ev
,
V. G.
,
Zarko
,
V. E.
, and
Kutsenogii
,
K. P.
,
1981
, “
Experimental Investigation of the Agglomeration of Aluminum Particles in Burning Condensed Systems
,”
Combust., Explos. Shock Waves
,
17
(
3
), pp.
245
251
.
16.
Son
,
S.
,
Sivathanu
,
Y. R.
,
Moore
,
J. E.
, and
Lim
,
J.
,
2009
, “
Experimental Characteristics of Particle Dynamics Within Solid Rocket Motors Environments
,”
56th JANNAF Interagency Joint Propulsion Meeting
,
Las Vegas, NV
,
Apr. 14–17
, FA9300-08-M-3022.
17.
Carlotti
,
S.
,
Anfossi
,
J.
,
Bellini
,
R.
,
Colombo
,
G.
, and
Maggi
,
F.
,
2019
, “
Particulate Phase Evolution Inside Solid Rocket Motors: Preliminary Results
,”
Proceedings of 8th European Conference for Aeronautics and Aerospace Sciences (EUCASS)
,
Madrid, Spain
,
July 1–4
.
18.
Xiao
,
Y.
,
Amano
,
R. S.
,
Cai
,
T.
, and
Li
,
J.
,
2005
, “
New Method to Determine the Velocities of Particles on a Solid Propellant Surface
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
9
), pp.
1057
1061
.
19.
Xiao
,
Y.
,
Amano
,
R. S.
,
Cai
,
T.
,
Li
,
J.
, and
He
,
G.
,
2003
, “
Particle Velocity on Solid-Propellant Surface Using X-ray Real-Time Radiography
,”
AIAA J.
,
41
(
9
), pp.
1763
1770
.
20.
Li
,
Z.
,
Wang
,
N.
,
Shi
,
B.
,
Li
,
S.
, and
Yang
,
R.
,
2019
, “
Effects of Particle Size on Two-Phase Flow Loss in Aluminized Solid Rocket Motors
,”
Acta Astronaut.
,
159
, pp.
33
40
. .
ISSN 0094-5765
.
21.
Majdalani
,
J.
,
Katta
,
A.
,
Barber
,
T.
, and
Maicke
,
B.
,
2013
, “
Characterization of Particle Trajectories in Solid Rocket Motors
,”
Proceedings of 49th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference
,
San Jose, CA
,
July 14–17
.
22.
Simoes
,
M.
,
Della Pieta
,
P.
,
Godfroy
,
F.
, and
Simonin
,
O.
,
2005
, “
Continuum Modeling of the Dispersed Phase in Solid Rocket Motors
,”
Proceedings of 17th AIAA Computational Fluid Dynamics Conference
,
Toronto, Ontario, Canada
,
June 6–9
.
23.
Amano
,
R. S.
, and
Yen
,
Y. H.
,
2016
, “
Investigation of Alumina Flow Breakup Process in Solid Rocket Propulsion Chamber
,”
54th AIAA Aerospace Sciences Meeting
,
San Diego, CA
,
Jan. 4–8
.
24.
Amano
,
R. S.
, and
Yen
,
Y.-H.
,
2015
, “
Study of Alumina Flow in a Propulsion Chamber
,”
51st AIAA/SAE/ASEE Joint Propulsion Conference
,
Orlando, FL
,
July 27–29
.
25.
Amano
,
R. S.
,
2014
, “Solid-Fuel Rocket Motor Efficiency Improvement Scheme,”
Novel Combustion Concepts for Sustainable Energy Development
,
Springer
,
India
, pp.
535
560
.
26.
Chen
,
W.
,
Abbas
,
A. I.
,
Ott
,
R. N.
, and
Amano
,
R. S.
,
2020
, “
Investigation of Liquid Breakup Process Solid Rocket Motor Part B: Vertical C-D Nozzle
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
091301
.
27.
Chen
,
W.
,
Abbas
,
A. I.
,
Ott
,
R. N.
, and
Amano
,
R. S.
,
2020
, “
Investigation of Liquid Breakup Process Solid Rocket Motor Part A: Horizontal Converging–Diverging Nozzle
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
052102
.
28.
Abousabae
,
M.
,
Amano
,
R. S.
, and
Casper
,
C.
,
2021
, “
Investigation of Liquid Droplet Flow Behavior in a Vertical Nozzle Chamber
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052108
.
29.
Greatrix
,
D. R.
,
2012
,
Powered Flight: The Engineering of Aerospace Propulsion
,
Springer-Verlag, London Ltd
,
London (UK)
,
323
343
.
30.
Sutton
,
G. P.
,
1992
,
Rocket Propulsion Elements
, 6th ed.,
John Wiley & Sons
,
New York
, p.
446
.
31.
Yen
,
Y.-H.
,
2016
, “
Numerical and Experimental Study of Liquid Break-up Process in Solid Rocket Motor Nozzle
,”
Ph.D. dissertation
,
The University of Wisconsin-Milwaukee
,
Milwaukee, WI
.
32.
Pei
,
Y.
,
Hu
,
B.
, and
Som
,
S.
,
2015
, “
Large Eddy Simulation of an N-Dodecane Spray Flame Under Different Ambient Oxygen Conditions
,”
Proceedings of the ASME 2015 Internal Combustion Engine Division Fall Technical Conference. Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development
,
Houston, TX
,
Nov. 8–11
, p.
V002T06A008
.
33.
Ameen
,
M. M.
,
Mirzaeian
,
M.
,
Millo
,
F.
, and
Som
,
S.
,
2018
, “
Numerical Prediction of Cyclic Variability in a Spark Ignition Engine Using a Parallel Large Eddy Simulation Approach
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052203
.
34.
Plengsaard
,
C.
,
2013
, “
Improved Engine Wall Models for Large Eddy Simulation (LES)
,”
Ph.D. dissertation
,
University of Wisconsin Madison
,
Madison, WI
.
35.
Hasan
,
A.
,
Elgammal
,
T.
,
Jackson
,
R.
, and
Amano
,
R.
,
2020
, “
Comparative Study of the Inline Configuration Wind Farm
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061302
.
36.
Hasan
,
A.
,
Abousabae
,
M.
,
Salem
,
A.
, and
Amano
,
R.
,
2021
, “
Study of Aerodynamic Performance and Power Output for Residential-Scale Wind Turbines
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
011302
.
37.
Selim
,
O. M.
,
Elgammal
,
T.
, and
Amano
,
R. S.
,
2020
, “
Experimental and Numerical Study on the Use of Guide Vanes in the Dilution Zone
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
083001
.
38.
Alkhafaji
,
A. A.
,
Selim
,
O. M.
,
Amano
,
R. S.
,
Strickler
,
J. R.
,
Hinow
,
P.
,
Jiang
,
H.
,
Sikkel
,
P. C.
, and
Kohls
,
N.
,
2021
, “
Mass Transfer Performance of a Marine Zooplankton Olfactometer
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
112102
.
39.
Elgammal
,
T.
,
Selim
,
O. M.
, and
Amano
,
R. S.
,
2021
, “
Enhancements of the Thermal Uniformity Inside a Gas Turbine Dilution Section Using Dimensional Optimization
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102102
.
40.
Selim
,
M. O.
, and
Amano
,
R. S.
,
2019
, “
Control Methods to Improve Combustor Exit Temperature Uniformity
,”
AIAASciTech
,
San Diego, CA
,
Jan. 7–11
.
41.
Amano
,
R. S.
, and
Yen
,
Y.-H.
,
2016
, “
Study of Liquid Breakup Mechanism Through a High-Speed Gas Flow
,”
Proceedings Phys., Vol. 184, Proceedings of the 5th International Conference on Jets, Wakes and Separated Flows (ICJWSF2015)
,
Stockholm, Sweden
,
June 15–18
, Springer, pp.
467
474
.
42.
Amano
,
R. S.
,
Yen
,
Y.-H.
,
Miller
,
T.
,
Sankaran
,
V.
,
Ebnit
,
A.
, and
Lightfoot
,
M.
,
2016
, “
Study of the Liquid Breakup Process in Solid Rocket Motor
,”
J. Spacecr. Rockets
,
53
(
5
), pp.
980
992
.
43.
Amano
,
R. S.
,
2012
, “
Feasibility Study of Hybrid LES/RANS Model for the Flow Over an Aerodynamic Body
,”
Proceedings of the Seventh International Symposium on Turbulence Heat and Mass Transfer
,
Palermo, Italy
,
Sept. 24–27
,
Begel House Inc., Danbury, CT
.
44.
Nourin
,
F.
, and
Amano
,
R. S.
,
2021
, “
Review of Gas Turbine Internal Cooling Improvement Technology
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
080801
.
45.
Amano
,
R. S.
,
Salem
,
A.
,
Nourin
,
F.
, and
Abousabae
,
M.
,
2021
, “
Experimental and Numerical Study of Jet Impingement Cooling for Improved Gas Turbine Blade Internal Cooling with In-Line and Staggered Nozzle Arrays
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
012103
.
46.
Saravani
,
M. S.
,
Amano
,
R. S.
,
DiPasquale
,
N. J.
, and
Halmo
,
J. W.
,
2020
, “
Turning Guide Vane Effect on Internal Cooling of Two-Passage Channel with Parallel Ribs
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
091303
.
47.
Nourin
,
F.
,
Salem
,
A. R.
, and
Amano
,
R. S.
,
2020
, “
Study on Heat Transfer Enhancement of Gas Turbine Blades
,”
Int. J. Energy Clean Environ.
,
21
(
2
), pp.
91
106
.
48.
Saravani
,
M. S.
,
DiPasquale
,
N. J.
,
Abbas
,
A. I.
, and
Amano
,
R. S.
,
2020
, “
Heat Transfer Evaluation for a Two-Pass Smooth Wall Channel: Stationary and Rational Cases
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061305
.
49.
Saravani
,
M. S.
,
Nicholas
,
J.
,
DiPasquale
,
N. J.
,
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2019
, “
Heat Transfer in Internal Cooling Channels of Gas Turbine Blades: Buoyancy and Density Ratio Effects
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112001
.
50.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Richards
,
K. J.
, and
Som
,
S.
,
2013
, “
Grid-Convergent Spray Models for Internal Combustion Engine Computational Fluid Dynamics Simulations
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012204
.
51.
Yuan
,
S.
,
Dabirian
,
R.
,
Shoham
,
O.
, and
Mohan
,
R. S.
,
2020
, “
Numerical Simulation of Liquid Droplet Coalescence and Breakup
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102101
.
52.
Carlos Berrio
,
J.
,
Pereyra
,
E.
, and
Ratkovich
,
N.
,
2018
, “
Computational Fluid Dynamics Modeling of Gas-Liquid Cylindrical Cyclones, Geometrical Analysis
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092003
.
53.
Ballesteros
,
M.
,
Ratkovich
,
N.
, and
Pereyra
,
E.
,
2020
, “
Analysis and Modeling of Liquid Holdup in Low Liquid Loading Two-Phase Flow Using Computational Fluid Dynamics and Experimental Data
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
012105
.
54.
Movahedi
,
H.
,
Vasheghani Farahani
,
M.
, and
Masihi
,
M.
,
2019
, “
Development of a Numerical Model for Single- and Two-Phase Flow Simulation in Perforated Porous Media
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042901
.
55.
Joseph
,
D. D.
,
Belanger
,
J.
, and
Beavers
,
G.S.
,
1999
, “
Breakup of a Liquid Drop Suddenly Exposed to a High-Speed Airstream
,,”
Int. J. Multiph. Flow
,
25
(
6–7
), pp.
1263
1303
.
56.
Witherspoon
,
W.
, and
Parthasarathy
,
R. N.
,
1997
, “
Break-up of Viscous Liquid Sheets Subjected to Symmetric and Asymmetric Gas Flow
,”
ASME J. Energy Resour. Technol.
,
119
(
3
), pp.
184
192
.
57.
Barrios
,
L.
, and
Prado
,
M. G.
,
2011
, “
Modeling Two-Phase Flow Inside an Electrical Submersible Pump Stage
,”
ASME J. Energy Resour. Technol.
,
133
(
4
), p.
042902
.
You do not currently have access to this content.