Abstract

Low concentration collectors are usually recommended for water heating and refrigeration systems. The literature reveals lack of information on numerical modeling, experimental data, and thermal performance of eccentric evacuated double tube solar collectors. This study is focused on eccentric solar collectors since this arrangement allows adequate concentration for achieving relatively high temperatures while having small size and occupying less space. The effects of the vacuum in the annular space and reflective film on the enhancement of working fluid heating and overall thermal performance were also assessed. An in-house numerical code using the finite volume method was used to discretize the conservation equations and the predictions were validated by experimental results obtained from an experimental rig that was constructed and instrumented for outdoor tests. The experiments were performed in the city of Campinas-Brazil during the autumn season. The investigated versions of the eccentric double tube solar collector include a version with a reflective film and vacuum, a second version with a reflective film but without vacuum, a third arrangement without a reflective film but with vacuum, and finally a version without both a reflective film and vacuum. The results showed that the version with reflective film and vacuum demonstrated high efficiency achieving 89%. The lowest efficiency of 42% was achieved by the version without both reflective film and vacuum. The comparative analysis of the four versions shows that the incorporation of reflective film increases the collector efficiency by 28%, while the vacuum increases the efficiency by about 1.3%.

References

1.
Suman
,
S.
,
Khan
,
M. K.
, and
Pathak
,
M.
,
2015
, “
Performance Enhancement of Solar Collectors—A Review
,”
Renew. Sustain. Energy Rev.
,
49
, pp.
192
210
.
2.
Tian
,
Y.
, and
Zhao
,
C. Y.
,
2013
, “
A Review of Solar Collectors and Thermal Energy Storage in Solar Thermal Applications
,”
Appl. Energy
,
104
, pp.
538
553
.
3.
Ahmed
,
S. F.
,
Khalid
,
M.
,
Vaka
,
M.
,
Walvekar
,
R.
,
Numan
,
A.
,
Khaliq Rasheed
,
A.
, and
Mujawar Mubarak
,
N.
,
2021
, “
Recent Progress in Solar Water Heaters and Solar Collectors: A Comprehensive Review
,”
Therm. Sci. Eng. Prog.
,
25
, p.
100981
.
4.
Kalogirou
,
S. A.
,
2004
, “
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
,
30
(
3
), pp.
231
295
.
5.
Eltaweel
,
M.
,
Abdel-Rehim
,
A. A.
, and
Attia
,
A. A. A.
,
2021
, “
A Comparison Between Flat-Plate and Evacuated Tube Solar Collectors in Terms of Energy and Exergy Analysis by Using Nanofluid
,”
Appl. Therm. Eng.
,
186
(
2020
), p.
116516
.
6.
Elsheniti
,
M. B.
,
Kotb
,
A.
, and
Elsamni
,
O.
,
2019
, “
Thermal Performance of a Heat-Pipe Evacuated-Tube Solar Collector at High Inlet Temperatures
,”
Appl. Therm. Eng.
,
154
, pp.
315
325
.
7.
Singh
,
P.
, and
Gaur
,
M. K.
,
2021
, “
Heat Transfer Analysis of Hybrid Active Greenhouse Solar Dryer Attached With Evacuated Tube Solar Collector
,”
Sol. Energy
,
224
, pp.
1178
1192
.
8.
Kushwah
,
A.
,
Kumar
,
A.
,
Pal
,
A.
, and
Kumar Gaur
,
M.
,
2021
, “
Experimental Analysis and Thermal Performance of Evacuated Tube Solar Collector Assisted Solar Dryer
,”
Mater. Today Proc.
,
47
(
Part 17
), pp.
5846
5851
.
9.
Mathew
,
A. A.
, and
Venugopal
,
T.
,
2021
, “
A Novel Thermal Energy Storage Integrated Evacuated Tube Heat Pipe Solar Dryer for Agricultural Products: Performance and Economic Evaluation
,”
Renew. Energy
,
179
, pp.
1674
1693
.
10.
Abu El-Maaty
,
A. A.
,
Awad
,
M.
,
Sultan
,
G.
, and
Hamed
,
A.
,
2021
, “
Performance Study of Fog Desalination System Coupled With Evacuated Tube Solar Collector
,”
Desalination
,
504
(
2020
), p.
114960
.
11.
Venkateshwar
,
K.
,
Siddique
,
A. R. M.
,
Tasnim
,
S.
,
Simha
,
H.
, and
Mahmud
,
S.
,
2021
, “
Thermoelectric Generator-Integrated Solar Air Heater: A Compact Passive System
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p. 041202.
12.
Ismail
,
K. A. R.
,
Teles
,
M. P. R.
, and
Lino
,
F. A. M.
,
2021
, “
Comparative Analysis of Eccentric Evacuated Tube Solar Collector With Circular and Rectangular Absorber Working With Nanofluid
,”
Clean. Eng. Technol.
,
3
, p.
100105
.
13.
Sharafeldin
,
M. A.
,
Gróf
,
G.
,
Abu-Nada
,
E.
, and
Mahian
,
O.
,
2019
, “
Evacuated Tube Solar Collector Performance Using Copper Nanofluid: Energy and Environmental Analysis
,”
Appl. Therm. Eng.
,
162
, p.
114205
.
14.
Sharafeldin
,
M. A.
, and
Gróf
,
G.
,
2019
, “
Efficiency of Evacuated Tube Solar Collector Using WO3/Water Nanofluid
,”
Renew. Energy
,
134
, pp.
453
460
.
15.
Sadeghi
,
G.
,
Safarzadeh
,
H.
, and
Ameri
,
M.
,
2019
, “
Experimental and Numerical Investigations on Performance of Evacuated Tube Solar Collectors With Parabolic Concentrator, Applying Synthesized Cu2O/Distilled Water Nanofluid
,”
Energy Sustain. Dev.
,
48
, pp.
88
106
.
16.
Chopra
,
K.
,
Tyagi
,
V. V.
,
Pathak
,
A. K.
,
Pandey
,
A. K.
, and
Sari
,
A.
,
2019
, “
Experimental Performance Evaluation of a Novel Designed Phase Change Material Integrated Manifold Heat Pipe Evacuated Tube Solar Collector System
,”
Energy Convers. Manage.
,
198
, p.
111896
.
17.
Sharan
,
P.
,
Kitz
,
K.
,
Wendt
,
D.
,
McTigue
,
J.
, and
Zhu
,
G.
,
2021
, “
Using Concentrating Solar Power to Create a Geological Thermal Energy Reservoir for Seasonal Storage and Flexible Power Plant Operation
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
010906
.
18.
Hassan
,
M.
,
Tariq
,
H. A.
,
Anwar
,
M.
,
Khan
,
T. I.
, and
Israr
,
A.
,
2021
, “
Design and Fabrication of Stirling Engine for Solar Power Application
,”
ASME J. Energy Resour. Technol.
,
142
(
11
), p.
111302
.
19.
Hemmati
,
H.
,
Zhang
,
J.
,
Spayde
,
E.
,
Mago
,
P. J.
, and
Cho
,
H.
,
2021
, “
Performance Analysis of Solar-Powered Organic Rankine Cycle With Energy Storage in Different Climate Zones in the United States
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
090908
.
20.
Meraj
,
M.
,
Khan
,
M. E.
, and
Azhar
,
M.
,
2020
, “
Performance Analyses of Photovoltaic Thermal Integrated Concentrator Collector Combined With Single Effect Absorption Cooling Cycle: Constant Flow Rate Mode
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
121305
.
21.
Chachin Vishal
,
C. V.
,
Krishnan
,
J.
,
Venkatesan
,
G.
,
Samson Packiaraj Raphael
,
V.
, and
Jalihal
,
P.
,
2021
, “
Dynamic Analysis of Direct Steam Generating Parabolic Trough Collector System
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
031304
.
22.
Veera Kumar
,
A.
,
Arjunan
,
T. V.
,
Seenivasan
,
D.
,
Venkatramanan
,
R.
, and
Vijayan
,
S.
,
2021
, “
Thermal Performance of an Evacuated Tube Solar Collector With Inserted Baffles for Air Heating Applications
,”
Sol. Energy
,
215
, pp.
131
143
.
23.
Yuan
,
Y.
,
Wu
,
G.
,
Yang
,
Q.
,
Cheng
,
R.
,
Tong
,
Y.
,
Zhang
,
Y.
,
Fang
,
H.
, and
Ma
,
Q.
,
2021
, “
Experimental and Analytical Optical-Thermal Performance of Evacuated Cylindrical Tube Receiver for Solar Dish Collector
,”
Energy
,
234
, p.
121301
.
24.
Teles
,
M. d. P. R.
,
Ismail
,
K. A. R.
, and
Arabkoohsar
,
A.
,
2019
, “
A New Version of a Low Concentration Evacuated Tube Solar Collector: Optical and Thermal Investigation
,”
Sol. Energy
,
180
, pp.
324
339
.
25.
Chai
,
S.
,
Yao
,
J.
,
Liang
,
J. D.
,
Chiang
,
Y. C.
,
Zhao
,
Y.
,
Chen
,
S. L.
, and
Dai
,
Y.
,
2021
, “
Heat Transfer Analysis and Thermal Performance Investigation on an Evacuated Tube Solar Collector With Inner Concentrating by Reflective Coating
,”
Sol. Energy
,
220
, pp.
175
186
.
26.
Kim
,
Y.
,
Han
,
G. Y.
, and
Seo
,
T.
,
2008
, “
An Evaluation on Thermal Performance of CPC Solar Collector
,”
Int. Commun. Heat Mass Transfer
,
35
(
4
), pp.
446
457
.
27.
Sobhansarbandi
,
S.
,
Martinez
,
P. M.
,
Papadimitratos
,
A.
,
Zakhidov
,
A.
, and
Hassanipour
,
F.
,
2017
, “
Evacuated Tube Solar Collector With Multifunctional Absorber Layers
,”
Sol. Energy
,
146
, pp.
342
350
.
28.
Jowzi
,
M.
,
Veysi
,
F.
, and
Sadeghi
,
G.
,
2019
, “
Experimental and Numerical Investigations on the Thermal Performance of a Modified Evacuated Tube Solar Collector: Effect of the Bypass Tube
,”
Sol. Energy
,
183
, pp.
725
737
.
29.
Huang
,
X.
,
Wang
,
Q.
,
Yang
,
H.
,
Zhong
,
S.
,
Jiao
,
D.
,
Zhang
,
K.
,
Li
,
M.
, and
Pei
,
G.
,
2019
, “
Theoretical and Experimental Studies of Impacts of Heat Shields on Heat Pipe Evacuated Tube Solar Collector
,”
Renew. Energy
,
138
, pp.
999
1009
.
30.
Gorjian
,
S.
,
Ebadi
,
H.
,
Calise
,
F.
,
Shukla
,
A.
, and
Ingrao
,
C.
,
2020
, “
A Review on Recent Advancements in Performance Enhancement Techniques for Low-Temperature Solar Collectors
,”
Energy Convers. Manage.
,
222
, p.
113246
.
31.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
,
John Wiley & Sons
,
Hoboken, NJ
.
32.
Karlekar
,
B. V.
, and
Desmond
,
R. M.
,
1977
,
Engineering Heat Transfer
,
West Publishing Company
,
Saint Paul, MN
.
33.
Raithby
,
G.
, and
Hollands
,
K.
,
1975
, “
A General Method of Obtaining Approximate Solutions to Laminar and Turbulent Free Convection Problems
,”
Adv. Heat Transfer
,
11
(
1
), pp.
265
315
.
34.
García-Valladares
,
O.
, and
Velázquez
,
N.
,
2009
, “
Numerical Simulation of Parabolic Trough Solar Collector: Improvement Using Counter Flow Concentric Circular Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
597
609
.
35.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corporation
,
New York
.
You do not currently have access to this content.