Abstract

Advanced gas turbine adopts axially staged combustion to achieve the goal of increasing turbine inlet temperature while limiting NOx emissions. The premixing effect of secondary fuel injection has a significant influence on secondary combustion organization and flame-dynamic characteristics. In this paper, we proposed a novel twin-nozzle configuration for secondary fuel injection. Secondary fuel is injected from the front nozzle, and air is injected from the rear nozzle. Operation condition studied includes the diameter (d) of front and rear nozzle from 1 mm to 3 mm, jet Reynolds number from 1900 to 5700, the jet spacing L ranges from 2d to 4d, and the equivalence ratio of primary stage from 0.72 to 0.59. This flexible configuration controls the injection of fuel and air separately and allows fully lifted flame front organization, which is crucial for fuel/air mixing and NOx control. Using high-speed CH* imaging, the effects of primary stage equivalence ratio, nozzle diameter, and rear air injection ratio on the dynamical characteristics are investigated. We discussed the flame propagation mechanism, flame base pulsation frequency, ignition delay distance, and heat release distribution. We found that when the jet Reynolds number is reduced from 5700 to 1900, the flame pulsation frequency rises from 176 Hz to 586 Hz. When the rear air injection ratio increases from 0 to 3, the pulsation frequency decreases from 586 Hz to 88 Hz, the flame lift-off height increases, and the ignition delay distance decreases.

References

1.
McDonell
,
V.
, and
Klein
,
M.
,
2013
, “Ground-Based Gas Turbine Combustion: Metrics, Constraints, and System Interactions,”
Gas Turbine Emissions
,
T. C.
Lieuwen
, and
V.
Yang
, eds.,
Cambridge University Press
,
Cambridge
, pp.
24
80
.
2.
Gollahalli
,
S. R.
, and
Pardiwalla
,
D.
,
2002
, “
Comparison of the Flame Characteristics of Turbulent Circular and Elliptic Jets in a Crossflow
,”
ASME J. Energy Res. Technol.
,
124
(
3
), pp.
197
203
.
3.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.
4.
Yi
,
T.
,
Halls
,
B. R.
,
Jiang
,
N.
,
Felver
,
J.
,
Sirignano
,
M.
,
Emerson
,
B. L.
,
Lieuwen
,
T. C.
,
Gord
,
J. R.
, and
Roy
,
S.
,
2019
, “
Autoignition-Controlled Flame Initiation and Flame Stabilization in a Reacting Jet in Crossflow
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2109
2116
.
5.
Genova
,
T.
,
Otero
,
M.
,
Reyes
,
J.
,
Martin
,
S.
, and
Ahmed
,
K.
,
2021
, “
Partial Premixing Effects on the Reacting Jet of a High-Pressure Axially Staged Combustor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p.
031006
.
6.
Shan
,
J. W.
, and
Dimotakis
,
P. E.
,
2006
, “
Reynolds-Number Effects and Anisotropy in Transverse-Jet Mixing
,”
J. Fluid Mech.
,
566
, pp.
47
96
.
7.
Sidey
,
J.
, and
Mastorakos
,
E.
,
2015
, “
Visualization of MILD Combustion From Jets in Cross-flow
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3537
3545
.
8.
Micka
,
D. J.
, and
Driscoll
,
J. F.
,
2012
, “
Stratified Jet Flames in a Heated (1390 K) Air Cross-flow with Autoignition
,”
Combust. Flame
,
159
(
3
), pp.
1205
1214
.
9.
Dayton
,
J. W.
,
Linevitch
,
K.
, and
Cetegen
,
B. M.
,
2019
, “
Ignition and Flame Stabilization of a Premixed Reacting Jet in Vitiated Crossflow
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2417
2424
.
10.
Sullivan
,
R.
,
Wilde
,
B.
,
Noble
,
D. R.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T. C.
,
2014
, “
Time-averaged Characteristics of a Reacting Fuel Jet in Vitiated Cross-flow
,”
Combust. Flame
,
161
(
7
), pp.
1792
1803
.
11.
Kolb
,
M.
,
Ahrens
,
D.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2016
, “
A Model for Predicting the Lift-Off Height of Premixed Jets in Vitiated Cross Flow
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p.
081901
.
12.
Shcherbanev
,
S.
,
Morinière
,
T.
,
Solana-Pérez
,
R.
,
Weilenmann
,
M.
,
Xiong
,
Y.
,
Doll
,
U.
, and
Noiray
,
N.
,
2020
, “
Anchoring of Premixed Jet Flames in Vitiated Crossflow With Pulsed Nanosecond Spark Discharge
,”
Appl. Energy Combust. Sci.
,
1–4
, p.
1
100010
.
13.
Goh
,
E.
,
Sirignano
,
M.
,
Li
,
J.
,
Nair
,
V.
,
Emerson
,
B.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2019
, “
Prediction of Minimum Achievable NOx Levels for Fuel-Staged Combustors
,”
Combust. Flame
,
200
, pp.
276
285
.
14.
Otero
,
M.
,
Genova
,
T.
,
Stiehl
,
B.
,
Morales
,
A. J.
,
Martin
,
S.
, and
Ahmed
,
K. A.
,
2021
, “
The Influence of Pressure on Flame-Flow Characteristics of a Reacting Jet in Crossflow
,”
ASME J. Energy Res. Technol.
,
144
(
5
), p.
052301
.
15.
Stiehl
,
B.
,
Otero
,
M.
,
Genova
,
T.
,
Martin
,
S.
, and
Ahmed
,
K.
,
2021
, “
The Effect of Pressure on NOx Entitlement and Reaction Timescales in a Premixed Axial Jet-In-Crossflow
,”
ASME J. Energy Res. Technol.
,
143
(
11
), p.
112306
.
16.
Lieuwen
,
T.
,
Chang
,
M.
, and
Amato
,
A.
,
2013
, “
Stationary Gas Turbine Combustion: Technology Needs and Policy Considerations
,”
Combust. Flame
,
160
(
8
), pp.
1311
1314
.
17.
Ahrens
,
D.
,
Kolb
,
M.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2014
, “
Nox Formation in a Reacting Premixed Jet in Hot Cross Flow
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Germany
,
June 16–20
.
18.
Sirignano
,
M. D.
,
Nair
,
V.
,
Emerson
,
B.
,
Seitzman
,
J.
, and
Lieuwen
,
T. C.
,
2019
, “
Nitrogen Oxide Emissions From Rich Premixed Reacting Jets in a Vitiated Crossflow
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5393
5400
.
19.
Genova
,
T.
,
Otero
,
M.
,
Morales
,
A.
,
Stiehl
,
B.
,
Martin
,
S.
, and
Ahmed
,
K.
,
2021
, “
Preheating and Premixing Effects on NOx Emissions in a High-pressure Axially Staged Combustor
,”
Combust. Flame
,
235
, p.
111710
.
20.
Radhouane
,
A.
,
Mahjoub Saïd
,
N.
,
Mhiri
,
H.
,
Bournot
,
P.
, and
Le Palec
,
G.
,
2016
, “
Twin Inclined Jets in Crossflow: Experimental Investigation of Different Flow Regimes and Jet Elevations
,”
Environ. Fluid Mech.
,
16
(
1
), pp.
45
67
.
21.
Gutmark
,
E. J.
,
Ibrahim
,
I. M.
, and
Murugappan
,
S.
,
2011
, “
Dynamics of Single and Twin Circular Jets in Cross Flow
,”
Exp. Fluids
,
50
(
3
), pp.
653
663
.
22.
Zang
,
B.
, and
New
,
T. H.
,
2017
, “
Near-Field Dynamics of Parallel Twin Jets in Cross-flow
,”
Phys. Fluids
,
29
(
3
), p.
035103
.
23.
Ziegler
,
H.
, and
Wooler
,
P. T.
,
1971
, “
Multiple Jets Exhausting Into a Crossflow
,”
J. Aircraft
,
8
(
6
), pp.
414
420
.
24.
Gregoric
,
M.
,
Davis
,
L. R.
, and
Bushnell
,
D. J.
,
1982
, “
An Experimental Investigation of Merging Buoyant Jets in a Crossflow
,”
ASME J. Heat. Transfer-Trans. ASME
,
104
(
2
), pp.
236
240
.
25.
Kolář
,
V.
,
Takao
,
H.
,
Todoroki
,
T.
,
Savory
,
E.
,
Okamoto
,
S.
, and
Toy
,
N.
,
2003
, “
Vorticity Transport Within Twin Jets in Crossflow
,”
Exp. Therm. Fluid. Sci.
,
27
(
5
), pp.
563
571
.
26.
McDonald
,
C. T.
,
Rodrigues
,
N. S.
,
Busari
,
O. O.
, and
Lucht
,
R. P.
,
2020
, “
Steady and Unsteady Features of An Elevated, Premixed, Reacting Jet in Vitiated Crossflow
,”
AIAA Propulsion and Energy 2020 Forum
,
Virtual
,
Aug. 24–28
.
27.
Wagner
,
J. A.
,
Renfro
,
M. W.
, and
Cetegen
,
B. M.
,
2017
, “
Premixed Jet Flame Behavior in a Hot Vitiated Crossflow of Lean Combustion Products
,”
Combust. Flame
,
176
, pp.
521
533
.
28.
Nair
,
V.
,
Sirignano
,
M.
,
Emerson
,
B.
,
Halls
,
B.
,
Jiang
,
N.
,
Felver
,
J.
,
Roy
,
S.
,
Gord
,
J.
, and
Lieuwen
,
T.
,
2019
, “
Counter Rotating Vortex Pair Structure in a Reacting Jet in Crossflow
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
1489
1496
.
29.
Nair
,
V.
,
Wilde
,
B.
,
Emerson
,
B.
, and
Lieuwen
,
T.
,
2019
, “
Shear Layer Dynamics in a Reacting Jet in Crossflow
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5173
5180
.
30.
Ebi
,
D.
,
Doll
,
U.
,
Schulz
,
O.
,
Xiong
,
Y.
, and
Noiray
,
N.
,
2019
, “
Ignition of a Sequential Combustor: Evidence of Flame Propagation in the Autoignitable Mixture
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5013
5020
.
31.
Shu
,
Z.
,
Dai
,
C.
,
Li
,
P.
, and
Mi
,
J.
,
2018
, “
Nitric Oxide of MILD Combustion of a Methane Jet Flame in Hot Oxidizer Coflow: Its Formations and Emissions Under H2O, CO2 and N2 Dilutions
,”
Fuel
,
234
, pp.
567
580
.
32.
Rodrigues
,
N. S.
,
McDonald
,
C. T.
,
Busari
,
O. O.
,
Satija
,
A.
, and
Lucht
,
R. P.
,
2021
, “
Transverse Injection of Rich, Premixed, Natural Gas-Air and Natural Gas-Hydrogen-Air Reacting Jets into High-Speed Vitiated Crossflow at Engine-Relevant Conditions
,”
Int. J. Hydrogen Energy
,
46
(
72
), pp.
35718
35738
.
You do not currently have access to this content.