Abstract

Fragmentation characteristics of granite in rotary-percussive drilling (RPD) are studied using the distinct element method. We developed a model to investigate the interaction between the rock and a polycrystalline diamond compact (PDC) cutter. The micro contact parameters in the model are calibrated by conducting a series of simulated mechanical tests of the rock. Sensitivity analyses are then conducted to according the drilling performances which are quantified as the penetration displacement, the fragmentation volume and the specific energy, as well as the lateral force and the particle size distribution. Results show that the model can well represent the typical fracture system under indentation of the cutter, the torque fluctuation phenomenon in drilling, and the formation of lateral chips, which verify the reliability of the model. The cutter with a back rake angle of 55 deg and impact frequency of 30 Hz has the best penetration performance in evaluated parameters. Increasing the frequency has a great effect on the rock breaking speed under the coupling effect of impact and cutting in the low frequency range. Considering crushing efficiency, 50 Hz is the recommended impact frequency. This paper provides a useful tool to represent the fragmentation performance of rotary-percussive drilling and sensitivity analyses shed light on the potential ways to improve the performance.

References

1.
Lu
,
Y.
,
Tang
,
J.
,
Ge
,
Z.
,
Xia
,
B.
, and
Liu
,
Y.
,
2013
, “
Hard Rock Drilling Technique With Abrasive Water Jet Assistance
,”
Int. J. Rock Mech. Min. Sci.
,
60
, pp.
47
56
.
2.
Schormair
,
N.
,
Thuro
,
K.
, and
Plinninger
,
R.
,
2006
, “
The Influence of Anisotropy on Hard Rock Drilling and Cutting
,”
Geol. Soc. London IAEG
,
491
, pp.
1
11
.
3.
Miyazaki
,
K.
,
Ohno
,
T.
,
Karasawa
,
H.
, and
Imaizumi
,
H.
,
2019
, “
Performance of Polycrystalline Diamond Compact Bit Based on Laboratory Tests Assuming Geothermal Well Drilling
,”
Geothermics
,
80
, pp.
185
194
.
4.
Teodoriu
,
C.
, and
Cheuffa
,
C.
,
2011
, “
A Comprehensive Review of Past and Present Drilling Methods With Application to Deep Geothermal Environment
,”
Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University
,
Stanford, CA
.
5.
Hashiba
,
K.
,
Fukui
,
K.
,
Liang
,
Y. Z.
,
Koizumi
,
M.
, and
Matsuda
,
T.
,
2015
, “
Force-Penetration Curves of a Button Bit Generated During Impact Penetration Into Rock
,”
Int. J. Impact Eng.
,
85
, pp.
45
56
.
6.
Randeberg
,
E.
,
Fordi
,
E.
,
Nygaard
,
G.
,
Erikssoni
,
M.
,
Gressgård
,
L.
, and
Hansen
,
K.
,
2012
, “
Potentials for Cost Reduction for Geothermal Well Construction in View of Various Drilling Technologies and Automation Opportunities
,”
Thirty-Sixth Workshop on Geothermal Reservoir Engineering
,
Stanford, CA
,
Jan. 30–Feb. 1
.
7.
Warren
,
T. M.
,
Angman
,
P.
, and
Houtchens
,
B.
,
2000
, “
Casing Drilling Application Design Considerations
,”
IADC/SPE Drilling Conference
,
New Orleans, LA
,
Feb. 23–25
,
Society of Petroleum Engineers
.
8.
Kumari
,
W. G. P.
,
Ranjith
,
P. G.
,
Perera
,
M. S. A.
,
Li
,
X.
,
Li
,
L. H.
,
Chen
,
B. K.
,
Avanthi Isaka
,
B. L.
, and
De Silva
,
V. R. S.
,
2018
, “
Hydraulic Fracturing Under High Temperature and Pressure Conditions with Micro CT Applications: Geothermal Energy From Hot Dry Rocks
,”
Fuel
,
230
, pp.
138
154
.
9.
Tantawy
,
H. F.
,
2015
, “
The Application of the Reelwell Drilling Method in Drilling and Casing a Vertical Well in One-Hole Section
,”
SPE Bergen One Day Seminar
,
Bergen, Norway
,
April
, Society of Petroleum Engineers.
10.
Ghasemloonia
,
A.
,
Rideout
,
D. G.
, and
Butt
,
S. D.
,
2015
, “
A Review of Drillstring Vibration Modeling and Suppression Methods
,”
Int. Pet. Sci. Eng.
,
131
, pp.
150
164
.
11.
Salimi
,
S.
, and
Ghalambor
,
A.
,
2011
, “
Experimental Study of Formation Damage During Underbalanced-Drilling in Naturally Fractured Formations
,”
Energies
,
4
(
10
), pp.
1728
1747
.
12.
Zhao
,
J.
,
Zhang
,
G.
,
Xu
,
Y.
,
Lin
,
A.
,
Zhao
,
J.
, and
Yang
,
D.
,
2019
, “
Enhancing Rate of Penetration in a Tight Formation With High-Pressure Water Jet (HPWJ) via a Downhole Pressurized Drilling Tool
,”
Int. Pet. Sci. Eng.
,
174
, pp.
1194
1207
.
13.
Hannegan
,
D. M.
,
2005
, “
Managed Pressure Drilling in Marine Environments-Case Studies
,”
SPE/IADC Drilling Conference
,
Amsterdam, Netherlands
,
February
.
14.
Song
,
X.
,
Lv
,
Z.
,
Li
,
G.
,
Hu
,
X.
, and
Shi
,
Y.
,
2017
, “
Numerical Analysis on the Impact of the Flow Field of Hydrothermal Jet Drilling for Geothermal Wells in a Confined Cooling Environment
,”
Geothermics
,
66
, pp.
39
49
.
15.
Song
,
X.
,
Lyu
,
Z.
,
Cui
,
L.
,
Li
,
G.
,
Ji
,
G.
, and
Pang
,
Z.
,
2017
, “
Comparison of Numerical Analysis on the Downhole Flow Field for Multi-Orifice Hydrothermal Jet Drilling Technology for Geothermal Wells
,”
Geothermics
,
70
, pp.
314
323
.
16.
Wu
,
X.
,
Huang
,
Z.
,
Li
,
G.
,
Li
,
R.
,
Yan
,
P.
,
Deng
,
X.
,
Wu
,
K.
, and
Dai
,
X.
,
2018
, “
Experiment on Coal Breaking With Cryogenic Nitrogen Jet
,”
Int. Pet. Sci. Eng.
,
169
, pp.
405
415
.
17.
Zhang
,
S.
,
Huang
,
Z.
,
Huang
,
P.
,
Wu
,
X.
,
Xiong
,
C.
, and
Zhang
,
C.
,
2018
, “
Numerical and Experimental Analysis of Hot Dry Rock Fracturing Stimulation With High-Pressure Abrasive Liquid Nitrogen Jet
,”
Int. Pet. Sci. Eng.
,
163
, pp.
156
165
.
18.
Zhang
,
S.
,
Huang
,
Z.
,
Li
,
G.
,
Wu
,
X.
,
Peng
,
C.
, and
Zhang
,
W.
,
2018
, “
Numerical Analysis of Transient Conjugate Heat Transfer and Thermal Stress Distribution in Geothermal Drilling With High-Pressure Liquid Nitrogen Jet
,”
Appl. Therm. Eng.
,
129
, pp.
1348
1357
.
19.
Kollé
,
J.
,
1999
, “
A Comparison of Water Jet, Abrasive Jet
and
Rotary Diamond Drilling in Hard Rock
,”
Tempress Technologies Inc.
, pp.
1
8
.
20.
Hu
,
X.
,
Song
,
X.
,
Li
,
G.
,
Shen
,
Z.
,
Lyu
,
Z.
,
Shi
,
Y.
, and
Zheng
,
R.
,
2018
, “
An Analytical Model to Evaluate the Heating Conditions for Drilling in Hard Rock Using an Innovative Hydrothermal Spallation Method
,”
Appl. Therm. Eng.
,
142
, pp.
709
716
.
21.
Lehmann
,
F.
,
Reich
,
M.
,
Mezzetti
,
M.
,
Anders
,
E.
, and
Voigt
,
M.
,
2017
, “
The Future of Deep Drilling-A Drilling System Based on Electro Impulse Technology
,”
Oil Gas Eur. Mag.
,
43
(
4
), pp.
187
191
.
22.
Santos
,
H.
,
Placido
,
J.
,
Oliveira
,
J.
, and
Gamboa
,
L.
,
2000
, “
Overcoming Hard Rock Drilling Challenges
,”
IADC/SPE Drilling Conference
,
New Orleans, LA
,
Feb. 23–25
, Society of Petroleum Engineers.
23.
Ji
,
Z.
,
Shi
,
H.
,
Dai
,
X.
,
Song
,
H.
,
Li
,
G.
, and
Shen
,
Z.
,
2021
, “
Fragmentation Characteristics of Rocks Under Indentation by a Single Polycrystalline Diamond Compact Cutter
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
100906
.
24.
Derdour
,
F. Z.
,
Kezzar
,
M.
, and
Khochemane
,
L.
,
2018
, “
Optimization of Penetration Rate in Rotary Percussive Drilling Using Two Techniques: Taguchi Analysis and Response Surface Methodology (RMS)
,”
Powder Technol.
,
339
, pp.
846
853
.
25.
Yue
,
Z.
,
Lee
,
C.
,
Law
,
K.
, and
Tham
,
L.
,
2004
, “
Automatic Monitoring of Rotary-Percussive Drilling for Ground Characterization—Illustrated by a Case Example in Hong Kong
,”
Int. J. Rock Mech. Min. Sci.
,
41
(
4
), pp.
573
612
.
26.
Chiang
,
L.
,
2004
, “
Dynamic Force-Penetration Curves in Rock by Matching Theoretical to Experimental Wave Propagation Response
,”
Exp. Mech.
,
44
(
2
), pp.
167
175
.
27.
Saksala
,
T.
,
Gomon
,
D.
,
Hokka
,
M.
, and
Kuokkala
,
V. T.
,
2014
, “
Numerical and Experimental Study of Percussive Drilling With a Triple-Button Bit on Kuru Granite
,”
Int. J. Impact Eng.
,
72
, pp.
56
66
.
28.
Kahraman
,
S.
,
Bilgin
,
N.
, and
Feridunoglu
,
C.
,
2003
, “
Dominant Rock Properties Affecting the Penetration Rate of Percussive Drills
,”
Int. J. Rock Mech. Min. Sci.
,
40
(
5
), pp.
711
723
.
29.
Rostamsowlat
,
I.
,
Akbari
,
B.
, and
Evans
,
B.
,
2018
, “
Analysis of Rock Cutting Process With a Blunt PDC Cutter Under Different Wear Flat Inclination Angles
,”
Int. Pet. Sci. Eng.
,
171
, pp.
771
783
.
30.
Song
,
H.
,
Shi
,
H.
,
Li
,
G.
,
Ji
,
Z.
,
Li
,
S.
,
Liu
,
C.
, and
Li
,
X.
,
2021
, “
Three-Dimensional Numerical Simulation of Energy Transfer Efficiency and Rock Damage in Percussive Drilling With Multiple-Button Bit
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
024501
.
31.
Hustrulid
,
W. A.
, and
Fairhurst
,
C.
,
1971
, “
A Theoretical and Experimental Study of the Percussive Drilling of Rock Part II—Force-Penetration and Specific Energy Determinations
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
8
(
4
), pp.
335
356
.
32.
Franca
,
L. F. P.
,
2011
, “
A Bit–Rock Interaction Model for Rotary–Percussive Drilling
,”
Int. J. Rock Mech. Min. Sci.
,
48
(
5
), pp.
827
835
.
33.
Li
,
H.
,
Butt
,
S.
,
Munaswamy
,
K.
, and
Arvani
,
F.
,
2010
, “
Experimental Investigation of Bit Vibration on Rotary Drilling Penetration Rate
,”
44th U.S. Rock Mechanics Symposium and 5th U.S.-Canada Rock Mechanics Symposium
,
Salt Lake City, UT
,
American Rock Mechanics Association
, p.
6
.
34.
Fu
,
J.
,
Li
,
G.
,
Shi
,
H.
,
Niu
,
J.
, and
Huang
,
Z.
,
2012
, “
A Novel Tool to Improve the Rate of Penetration–Hydraulic-Pulsed Cavitating-Jet Generator
,”
SPE Drill. Completion
,
27
(
3
), pp.
355
362
.
35.
Saksala
,
T.
,
Fourmeau
,
M.
,
Kane
,
P. A.
, and
Hokka
,
M.
,
2018
, “
3D Finite Elements Modelling of Percussive Rock Drilling: Estimation of Rate of Penetration Based on Multiple Impact Simulations With a Commercial Drill Bit
,”
Comput. Geotech.
,
99
, pp.
55
63
.
36.
Dong
,
G.
, and
Chen
,
P.
,
2018
, “
3D Numerical Simulation and Experiment Validation of Dynamic Damage Characteristics of Anisotropic Shale for Percussive-Rotary Drilling With a Full-Scale PDC Bit
,”
Energies
,
11
(
6
), p.
1326
.
37.
Kuangv
,
Y.
,
Zhang
,
M.
,
Feng
,
M.
,
Zhang
,
Y.
,
Han
,
Y.
, and
Peng
,
Y.
,
2016
, “
Simulation and Experimental Research of PDC Bit Cutting Rock
,”
J. Fail. Anal. Prev.
,
16
(
6
), pp.
1101
1107
.
38.
Cook
,
N. G. W.
,
Hood
,
M.
, and
Tsai
,
F.
,
1984
, “
Observations of Crack Growth in Hard Rock Loaded by an Indenter
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
21
(
2
), pp.
97
107
.
39.
Chiang
,
L. E.
, and
Elias
,
D. A.
,
2008
, “
A 3D FEM Methodology for Simulating the Impact in Rock-Drilling Hammers
,”
Int. J. Rock Mech. Min. Sci.
,
45
(
5
), pp.
701
711
.
40.
Bilgesu
,
I.
,
Sunal
,
O.
,
Tulu
,
I.
, and
Heasley
,
K.
,
2008
, “
Modeling Rock and Drill Cutter Behavior
,”
The 42nd US Rock Mechanics Symposium (USRMS)
,
San Francisco, CA
,
June
.
41.
Song
,
Y.
, and
Dahi Taleghani
,
A.
,
2021
, “
Numerical Simulation of Proppant Placement in Scaled Fracture Networks
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
043004
.
42.
Shreedharan
,
S.
, and
Kulatilake
,
P. H.
,
2016
, “
Discontinuum–Equivalent Continuum Analysis of the Stability of Tunnels in a Deep Coal Mine Using the Distinct Element Method
,”
Rock Mech. Rock Eng.
,
49
(
5
), pp.
1903
1922
.
43.
Damjana
,
B.
, and
Cundall
,
P.
,
2016
, “
Application of Distinct Element Methods to Simulation of Hydraulic Fracturing in Naturally Fractured Reservoirs
,”
Comput. Geotech.
,
71
, pp.
283
294
.
44.
Block
,
G.
, and
Jin
,
H.
,
2009
, “
Role of Failure Mode
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
October
, p.
9
.
45.
Akbari
,
B.
,
Butt
,
S. D.
,
Munaswamy
,
K.
, and
Arvani
,
F.
,
2011
, “
Dynamic Single PDC Cutter Rock Drilling Modeling And Simulations Focusing on Rate of Penetration Using Distinct Element Method
,”
45th U.S. Rock Mechanics/Geomechanics Symposium
,
San Francisco, CA
,
June
, p.
7
.
46.
Yahiaoui
,
M.
,
Paris
,
J.-Y.
,
Delbé
,
K.
,
Denape
,
J.
,
Gerbaud
,
L.
, and
Dourfaye
,
A.
,
2016
, “
Independent Analyses of Cutting and Friction Forces Applied on a Single Polycrystalline Diamond Compact Cutter
,”
Int. J. Rock Mech. Min. Sci.
,
85
, pp.
20
26
.
47.
Yahiaoui
,
M.
,
Paris
,
J. Y.
,
Delbé
,
K.
,
Denape
,
J.
,
Gerbaud
,
L.
,
Colin
,
C.
,
Ther
,
O.
, and
Dourfaye
,
A.
,
2016
, “
Quality and Wear Behavior of Graded Polycrystalline Diamond Compact Cutters
,”
Int. J. Refract. Met. Hard Mater.
,
56
, pp.
87
95
.
48.
Cundall
,
P. A.
,
1971
, “
A Computer Model for Simulating Progressive, Large-Scale Movement in Blocky Rock System
,”
Proceedings of the International Symposium on Rock Mechanics
.
49.
Cundall
,
P. A.
, and
Strack
,
O. D.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
,
29
(
1
), pp.
47
65
.
50.
Itasca Consulting Group I.
,
2019
, “Numerical Simulations With PFC.”
51.
Cundall
,
P. A.
, and
Hart
,
R. D.
,
1992
, “
Numerical Modelling of Discontinua
,”
Engineering Computations
,
9
, pp.
101
113
.
52.
Saksala
,
T.
,
2016
, “
Numerical Study of the Influence of Hydrostatic and Confining Pressure on Percussive Drilling of Hard Rock
,”
Comput. Geotech.
,
76
, pp.
120
128
.
53.
Akbari
,
B.
,
2011
,
Polycrystalline Diamond Compact Bit-Rock Interaction
,
Masters Thesis
,
Memorial University of Newfondland
.
54.
Menezes
,
P. L.
,
Lovell
,
M. R.
,
Avdeev
,
I. V.
, and
Higgs III
,
C. F.
,
2014
, “
Studies on the Formation of Discontinuous Rock Fragments During Cutting Operation
,”
Int. J. Rock Mech. Min. Sci.
,
71
, pp.
131
142
.
55.
Kou
,
S.
,
Lindqvist
,
P. A.
,
Tang
,
C.
, and
Xu
,
X.
,
1999
, “
Numerical Simulation of the Cutting of Inhomogeneous Rocks
,”
Int. J. Rock Mech. Min. Sci.
,
36
(
5
), pp.
711
717
.
56.
Liu
,
H.
,
Kou
,
S.
, and
Lindqvist
,
P. A.
,
2008
, “
Numerical Studies on Bit-Rock Fragmentation Mechanisms
,”
Int. J. Geomech.
,
8
(
1
), pp.
45
67
.
57.
Yan
,
Y.
,
Ji
,
L.
,
Bao
,
Y.
, and
Jiang
,
Y.
,
2012
, “
An Experimental and Numerical Study on Laser Percussion Drilling of Thick-Section Alumina
,”
J. Mater. Process. Technol
,
212
(
6
), pp.
1257
1270
.
58.
Zhang
,
X.
, and
Wong
,
L. N. Y.
,
2013
, “
Crack Initiation, Propagation and Coalescence in Rock-Like Material Containing Two Flaws: A Numerical Study Based on Bonded-Particle Model Approach
,”
Rock Mech. Rock Eng.
,
46
(
5
), pp.
1001
1021
.
59.
Wan
,
X.
, and
Cai
,
M.
,
2019
, “
A Comprehensive Parametric Study of Grain-Based Models for Rock Failure Process Simulation
,”
Int. J. Rock Mech. Min. Sci.
,
115
, pp.
60
76
.
60.
Bauer
,
S. J.
,
Huang
,
K.
,
Chen
,
Q.
,
Ghassemi
,
A.
, and
Barrow
,
P.
,
2016
, “
Experimental and Numerical Investigation of Hydro-Thermally Induced Shear Stimulation
,”
50th US Rock Mechanics/Geomechanics Symposium
,
Houston, TX
,
June 25–29
.
61.
Ye
,
Z.
, and
Ghassemi
,
A.
,
2018
, “
Injection-Induced Shear Slip and Permeability Enhancement in Granite Fractures
,”
J. Geophys. Res. B: Solid Earth
,
123
(
10
), pp.
9009
9032
.
62.
Kou
,
S.
,
Kiu
,
H.
,
Lindqvist
,
P.-A.
, and
Tang
,
C. A.
,
2004
, “
Rock Fragmentation Mechanisms Induced by a Drill Bit
,”
Int. J. Rock Mech. Min. Sci.
,
41
(
Suppl. 1
), pp.
527
532
.
63.
Mishnaevsky
,
L.
,
1995
, “
Physical Mechanisms of Hard Rock Fragmentation Under Mechanical Loading: A Review
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
32
(
8
), pp.
763
766
.
64.
Swain
,
M. V.
, and
Lawn
,
B. R.
,
1976
, “
Indentation Fracture in Brittle Rocks and Glasses
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
13
(
11
), pp.
311
319
.
65.
Paul
,
B.
, and
Gangal
,
M.
,
1969
, “
Why Compressive Loads on Drill Bits Produce Tensile Splitting in Rock
,”
Drilling and Rock Mechanics Symposium
,
Society of Petroleum Engineers
.
66.
Akbari
,
B.
, and
Miska
,
S. Z.
,
2017
, “
Relative Significance of Multiple Parameters on the Mechanical Specific Energy and Frictional Responses of Polycrystalline Diamond Compact Cutters
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022904
.
67.
Che
,
D.
,
Zhu
,
W.-L.
, and
Ehmann
,
K.F.
,
2016
, “
Chipping and Crushing Mechanisms in Orthogonal Rock Cutting
,”
Int. J. Mech. Sci.
,
119
, pp.
224
236
.
You do not currently have access to this content.