Abstract

Integrating production system and reservoir is used in several studies of offshore oilfield development and management for improved production forecasts through more realistic boundary conditions. This study evaluates the influence of the parameters in a production strategy of a reference model (carbonate oil reservoir) on financial and production performance. We first considered nonintegrated system (NI) with the reservoir and fixed boundary conditions for well and gathering system. We then considered integrated system (I) with the variable boundary conditions for the wells and gathering system. Finally, we compared both systems. Our analysis involved several steps to define the best production strategy for both systems based on net present value (NPV) and how integrated modeling helps define production strategy. For NI, three stages were considered: number of wells, placement of wells, and platform capacity. For I, five stages were evaluated (all NI parameters) with diameters and gas lift evaluation, and platform placement. The results are similar, but the simplifications (NI) may affect financial performance. The cross analysis indicated (in the hypothesis that the integrated system is closer to reality) that integrating the NI case resulted in considerable financial and production differences and may be useful in simplified systems. Since the main aspects of the object-function financial return were related to reservoir model behavior, one can first apply the nonintegrated optimization cycles, then add the integrated cycles, obtaining an intermediate time of the integrated model optimization in similar cases.

References

1.
Schiozer
,
D. J.
,
Santos
,
A. A. S.
, and
Drumond
,
P. S.
,
2015
, “
Integrated Model Based Decision Analysis in Twelve Steps Applied to Petroleum Field Development and Management
,”
SPE EUROPEC
,
Madri, Spain
,
June 1–4
.
2.
Fang
,
W. Y.
, and
Lo
,
K. K.
,
1996
, “
A Generalized Well Management Scheme for Reservoir Simulation
,”
SPE 29124. 13th Reservoir Simulation Symposium
,
San Antonio, TX
, February. SPE Res. Eng.
11
(
2
), pp.
116
120
. Paper No. SPE-29124-PA.
3.
Su
,
S. J.
,
Patacchini
,
L.
,
Mohmed
,
F.
,
Farouk
,
M.
,
Ouzzane
,
D.
,
Draoui
,
E.
, and
Amoudruz
,
P.
,
2016
, “
Coupling Production and Injection Systems With Multiple Reservoir Models: A Novel Method of Optimizing Development Strategies in a Mature Giant Oilfield
,”
Abu Dhabi International Petroleum Exhibition & Conference
,
Abu Dhabi, UAE
,
Nov. 7
, Paper No. SPE-183153-MS,
Society of Petroleum Engineers
,
4.
Hohendorff Filho
,
J. C. V.
, and
Schiozer
,
D. J.
,
2017
, “
Evaluation of Reservoir and Production System Integration in Production Strategy Selection
,”
SPE Reservoir Simulation Conference
,
Montgomery
,
Feb. 20–22
.
5.
Barroux
,
C. C.
,
Duchet-Suchaux
,
P.
,
Samier
,
P.
, and
Nabil
,
R.
,
2000
, “
Linking Reservoir and Surface Simulator: How to Improve the Coupled Solutions
,”
SPE 65159. European Petroleum Conference
,
Paris, France
,
Oct. 24–25
.
6.
Kosmala
,
A.
,
Aanonsen
,
S. I.
,
Gajraj
,
A.
,
Biran
,
V.
,
Brusdal
,
K.
,
Stokkenes
,
A.
, and
Torrens
,
R.
,
2003
, “
Coupling of a Surface Network With Reservoir Simulation
,”
SPE Annual Technical Conference and Exhibition
,
Denver, CO
,
Oct. 5–8
,
Paper No. SPE 84220.
7.
Rotondi
,
M.
,
Cominelli
,
A.
,
Di Giorgio
,
C.
,
Rossi
,
R.
,
Vignati
,
E.
, and
Caraati
,
B.
,
2008
, “
The Benefits of Integrated Asset Modeling: Lesson Learned From Field Cases
,”
SPE Europec/EAGE Annual Conference and Exhibition Held in Rome
,
Italy
,
June 9–12
, Paper No.
SPE 113831.
8.
Cotrim
,
H. A.
,
Hohendorff Filho
,
J. C. V.
, and
Schiozer
,
D. J.
,
2011
, “
Production Optimization Considering Interaction Between Reservoirs and Constrained Surface Facilities
,”
Reservoir Characterization and Simulation Conference and Exhibition
,
Abu Dhabi, UAE
,
Oct. 9–11
, Paper No.
SPE 148334.
9.
Hohendorff Filho
,
J. C. V.
, and
Schiozer
,
D. J.
,
2018
, “
Effect of Reservoir and Production System Integration on Field Production Strategy Selection
,”
Oil Gas Sci. Technol.
,
73
, pp.
1
15
.
10.
de Souza Victorino
,
I. R.
,
von Hohendorff Filho
,
J. C.
,
de Castro
,
M. S.
,
de Mello
,
S. F.
, and
Schiozer
,
D. J.
,
2018
, “
Influence of Well and Gathering Systems Parameters on Integrated Petroleum Reservoir and Production System Simulations
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
(
9
), p.
435
.
11.
Campozana
,
F. P.
,
Santos
,
R. L.
,
Madeira
,
M. G.
,
Sousa
,
S. H. G.
, and
Spinola
,
M.
,
2008
, “
Optimization of Surface Network and Platform Location Using a Next Generation Reservoir Simulator Coupled With an Integrated Asset Optimizer—An Application to an Offshore Deep Water Oil Field in Brazil
,”
International Petroleum Technology Conference
,
Kuala Lumpur, Malaysia
,
Dec. 3–5
, Paper No.
IPTC-12500-MS.
12.
Rosa
,
V. R.
, and
Ferreira Filho
,
V. J. M.
,
2012
, “
Optimizing the Location of Platforms and Manifolds
,”
ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, Vol. 6: Materials Technology; Polar and Arctic Sciences and Technology; Petroleum Technology Symposium
,
Rio de Janeiro, Brazil
,
July 1–6
, pp.
813
818
, Paper No. OMAE2012-84211.
13.
Gaspar
,
A. T. F. S.
,
Barreto
,
C. E. A. G.
,
Munoz Mazo
,
E. O.
, and
Schiozer
,
D. J.
,
2014
, “
Application of Assisted Optimization to Aid Oil Exploitation Strategy Selection for Offshore Fields
,”
SPE LACPEC
,
Maracaibo, Venezuela
,
May 21–23
, Paper No.
SPE 169464.
14.
Bento
,
D. F.
, and
Schiozer
,
D. J.
,
2010
, “
The Influence of the Production Lines Pressure Drop in the Definition of the Oilfield Drainage Strategy
,”
SPE LACPEC
,
Lima, Peru
,
Dec. 1–3
, Paper No.
SPE 138259.
15.
Oliveira
,
L. C. G.
,
1989
, “
Simulador Para Rede Coletora Submarina de Produção
,”
Dissertation (master)
, Faculty of Mechanical Engineering, State University of Campinas, Brazil, p.
248
(in Portuguese).
16.
Victorino
,
I. R. S.
,
Hohendorff Filho
,
J. C. V.
,
Castro
,
M. S.
, and
Schiozer
,
D. J.
,
2016
, “
Sensibility Analysis of Production System Parameters for Integrated Simulation of Reservoir and Production Systems
,”
Rio Oil & Gas Expo and Conference
,
Rio de Janeiro, Brazil
,
Oct. 24–27
.
17.
Hohendorff Filho
,
J. C. V.
,
Vasconcelos
,
D. B.
, and
Schiozer
,
D. J.
,
2016
, “
Framework to Assist Integrated Model-Based Decision Analysis as Applied to Petroleum Fields Development and Management
,”
Rio Oil & Gas Expo and Conference
,
Rio de Janeiro, Brazil
,
Oct. 24–27
.
18.
Victorino
,
I. R. S.
,
Hohendorff Filho
,
J. C. V.
,
Castro
,
M. S.
, and
Schiozer
,
D. J.
,
2019
, “
Analysis of the Production of a Pre-Salt Based Carbonate Reservoir Through Integrated Simulation of Reservoir and Production System
,”
Int. J. Pet. Eng.
,
3
(
3
), pp.
228
253
.
19.
Gaspar
,
A. T. F. S.
,
Avansi
,
G. D.
,
Santos
,
A. A. S.
,
Hohendorff Filho
,
J. C. V.
, and
Schiozer
,
D. J.
,
2015
, “
UNISIM-I-D: Benchmark Studies for Oil Field Development and Production Strategy Selection
,”
Int. J. Model. Simul. Pet. Ind.
,
9
, pp.
47
55
.
20.
Mezzomo
,
C. C.
, and
Schiozer
,
D. J.
,
2003
, “
Methodology for Field Development Optimization With Water Injection
,”
SPE Hydrocarbon Economics and Evaluation Symposium
,
Dallas, TX
,
Apr. 5–8
.
21.
Sampaio
,
M. A.
,
Barreto
,
C. E. A. G.
,
Gaspar
,
A. T. F. S. R.
, and
Schiozer
,
D. J.
,
2011
, “
Comparison Between Smart and Conventional Wells Optimized Under Economic Uncertainty
,”
OTC Brazil
,
Rio de Janeiro, Brazil
,
Oct. 4–6
.
22.
Yue
,
P.
,
Zhou
,
J.
,
Kang
,
L. X.
,
Liu
,
P.
,
Chunsheng
,
J.
, and
Chen
,
X.
,
2021
, “
Reservoir and Wellbore Flow Coupling Model for Fishbone Multilateral Wells in Bottom Water Drive Reservoirs
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
123001
.
23.
An
,
C.
,
Zhang
,
P.
,
Wesley
,
A.
,
Bardy
,
G.
,
Hall
,
K.
, and
Erdogan
,
M.
,
2020
, “
A Novel Workflow for Optimizing Well Placement Under Geomechanical Constraints: A Case Study
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
033002
.
24.
He
,
Y.
,
Qiao
,
Y.
,
Qin
,
J.
,
Tang
,
Y.
,
Wang
,
Y.
, and
Chai
,
Z.
,
2021
, “
A Novel Method to Enhance Oil Recovery by Inter-Fracture Injection and Production Through the Same Multi-Fractured Horizontal Well
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
043005
.
25.
Tariq
,
Z.
,
Mahmoud
,
M.
,
Alade
,
O.
,
Abdulraheem
,
A.
,
Mustafa
,
A.
,
Mokheimer
,
E. M. A.
,
Al-Jawad
,
M.
, and
Al-Nakhli
,
A.
,
2021
, “
Productivity Enhancement in Multilayered Unconventional Rocks Using Thermochemicals
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
033001
.
26.
Al Dhaif
,
R.
,
Ibrahim
,
A. F.
, and
Elkatatny
,
S.
,
2021
, “
Prediction of Surface Oil Rates for Volatile Oil and Gas Condensate Reservoirs Using Artificial Intelligence Techniques
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
033001
.
27.
Correia
,
M. G.
,
Hohendorff Filho
,
J. C. V.
,
Gaspar
,
A. T. F. S.
, and
Schiozer
,
D. J.
,
2015
, “
UNISIM-II-D: Benchmark Case Proposal Based on a Carbonate Reservoir
,”
SPE LACPEC
,
Quito, Ecuador
,
Nov. 18–20
.
28.
Beggs
,
H. D.
, and
Brill
,
J. P.
,
1991
,
Two-Phase Flow in Pipes
, 6th ed.
29.
Standing
,
M. B.
,
1947
, “
A Pressure-Volume-Temperature Correlation for Mixtures of California Oils and Gases
,”
Drill. & Prod. Prac.
,
275
.
30.
Hohendorff Filho
,
J. C. V.
, and
Schiozer
,
D. J.
,
2014
, “
Evaluation on Explicit Coupling Between Reservoir Simulators and Production System
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
044501
.
31.
Hohendorff Filho
,
J. C. V.
, and
Schiozer
,
D. J.
,
2018
, “
Integrated Production Strategy Optimization Based on Iterative Discrete Latin Hypercube
,”
ECMOR XVI
,
Barcelona, Spain
,
Sept. 3–6
.
32.
Cavalcante Filho
,
J. S.
,
2005
, “
Metodologia de Geração de Mapas de Qualidade com Aplicação na Seleção e Otimização de Estratégias de Produção
,”
Dissertation (master)
, Faculty of Mechanical Engineering, State University of Campinas, Brazil, p.
111
(in Portuguese).
33.
von Hohendorff Filho
,
J. C.
,
Maschio
,
C.
, and
Schiozer
,
D. J.
,
2016
, “
Production Strategy Optimization Based on Iterative Discrete Latin Hypercube
,”
J. Braz. Soc. Mech. Sci. Eng.
,
38
(
8
), pp.
2473
2480
.
34.
Loomba
,
A. K.
,
Botechia
,
V. E.
, and
Schiozer
,
D. J.
,
2021
, “
Application of Risk-Informed Closed-Loop Field Development Workflow to Elucidate the Evolution of Uncertainties
,”
J. Pet. Sci. Eng.
,
197
, p.
107960
.
You do not currently have access to this content.